

SELENE Mission Outline

Mission Objectives System Performance Mission Instruments Flight Operation International Collaboration

January 2007

<u>Science</u>

- 1. Science of the Moon
 - Study of origin and evolution of the Moon
- 2. Science on the Moon
 - In-situ measurement of lunar environment
- 3. Science from the Moon

Observation of solar-terrestrial plasma *environment*

Site search for future astronomical observation <u>Engineering:</u>

Technology development for future lunar exploration

Outline of the Mission

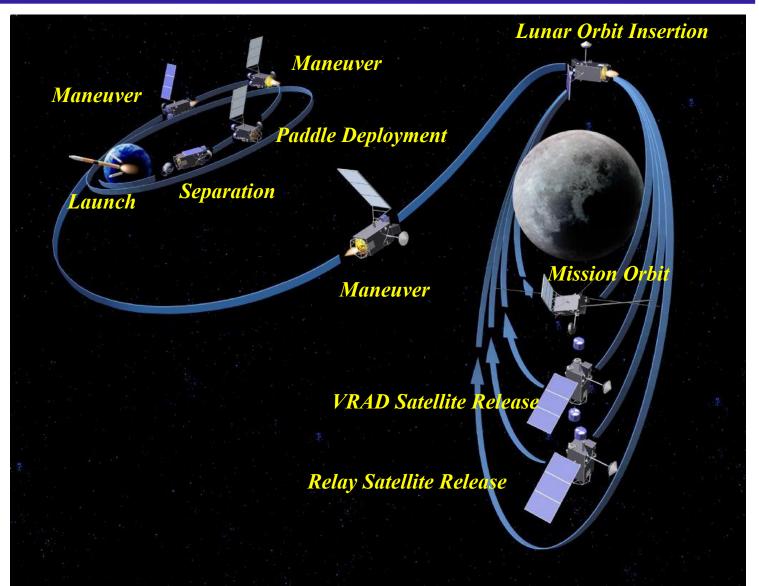
90 deg (polar orbit) 100 x 100 km (circular) 100 x 800 km (elliptical)

2885 kg (mission payload

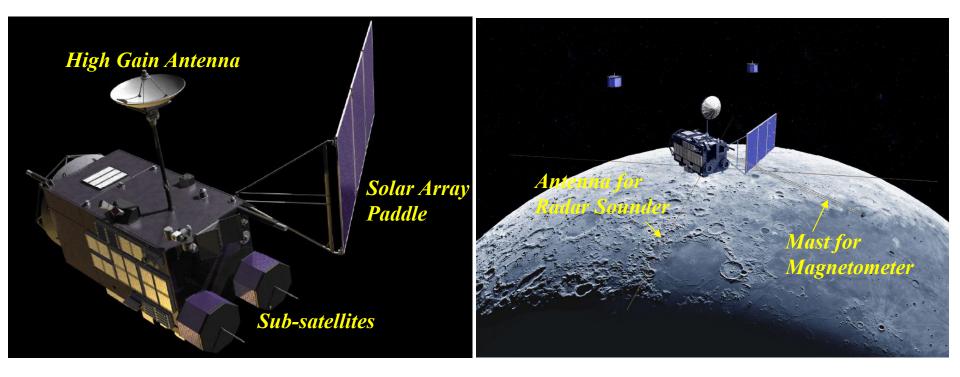
Inclination: Main Orbiter : Subsatellite Vstar : Rstar: Launch Mass 300kg) Siz.e Main Orbiter : Subsatellites: Mission period Attitude Control Main Orbiter : Subsatellites:

Mission Orbit

2.1 x 2.1 x 4.8 m 0.99 x 0.99 x 0.65m 1 year nominal


100 x 2400 km (elliptical)

3 axis controlled spin stabilized

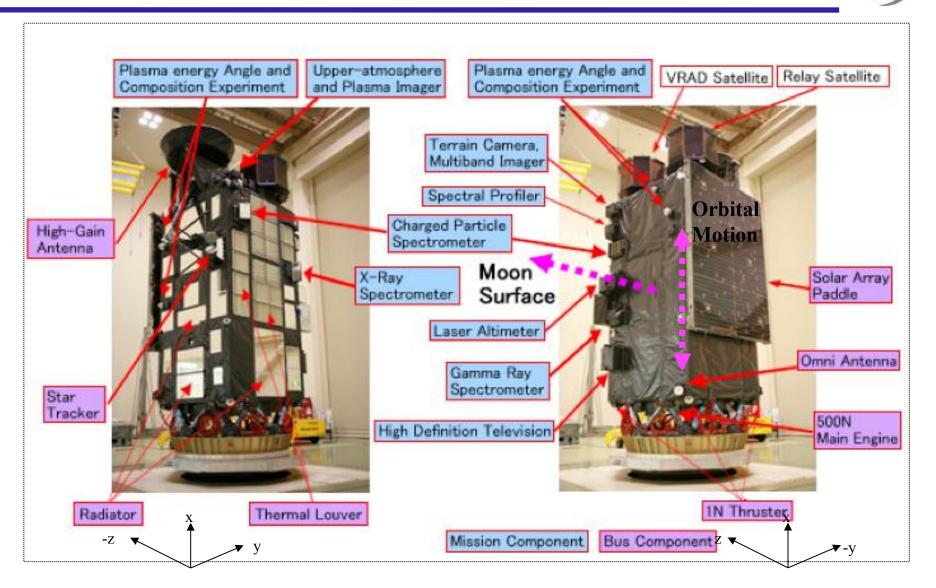

SELENE Mission Profile

Configuration of SELENE Spacecraft

in transfer orbit

in mission orbit

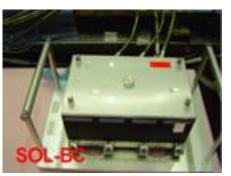
System Performance


Spacecraft	Subsystem	Performance	
Main Orbiter	Telemetry and Commanding	Antenna/Frequency: HGA/X-band(mission), S-ant/S- band(telemetry&command) Bit Rate: 1000bps(command), 2K/40Kbps(telemetry), 10Mbps (mission data)	
	Attitude Control	Attitude Control:Zero momentum system Three-axis control Attitude Control Accuracy :±0.1deg(three-axis) 4 Skew Reaction Wheels	
	Propulsion	Number of Thrusters: 500N×1, 20N×12, 1N×8 Propellant: Nitrogen Tetroxide 335Kg, Hydrazine 742Kg	
	Electrical Power	1 Wing Rigid panel (with 30 deg cant) Power Generation :More than 3,200W (EOL, β=0deg) Un-regulated Bus voltage:52.8V~32.6V Battery : Main-Orbiter ;35Ah Ni-Cd Battely ×16cells×8units	
	Data Handling	1553B data bus system MDR recording capacity:100Gbit	
VRAD Satellite		Mass 50Kg , Elliptical Orbit 100km×800km Attitude stabilization :Spin-stabilized, 13Ah Ni-MH Battery×16cells×1unit	
Relay Satellite		Mass 50Kg , Elliptical Orbit 100km×2,400km Attitude stabilization :Spin-stabilized, 13Ah Ni-MH Battery×16cells×1unit	

SELENE Mission Instruments

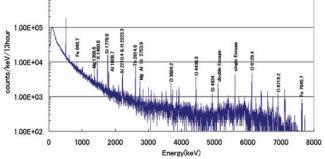
Cate	gory	Observation	Instrument	Measurement
		Element Abundance	X-ray Spectrometer (XRS)	Al, Si, Mg, Fe, etc.
Science of the Moon	Gamma-ray Spectrometer (GRS)		U, Th, K, H etc.	
	Mineral Composition	Multi-band Imager(MI)	mineral distribution	
		Spectral Profiler(SP)	mineral composition	
	Topography, Geological Structure	Terrain Camera(TC)	geographical features	
		Lunar Radar Sounder (LRS)	subsurface structure	
		Laser Altimeter(LALT)	topography	
	Gravity Field	Differential VLBI Radio Source(VRAD)	lunar gravity field	
		Relay Satellite(RSAT)	far side local gravity field	
		Magnetic Field	Lunar Magnetometer (LMAG)	magnetic field
			Electron Energy Analyzer(part of PACE)	surface magnetic field
Science on the Moon		Radiation Environment	Charged Particle Spectrometer(CPS)	energetic particles
		Plasma Environment	Plasma Energy Angle and Composition Experiment(PACE)	electrons and ions
		Ionosphere	Radio Science(RS)	ionospheric electrons
Science from the Moon		Solar-Terrestial Plasma Environment	Uppe-Atmosphere and Plasma Imager(UPI)	earth magnetosphere, aurora
			Wave Receiver(part of LRS)	planetary radiations
Publi	icity	Earth and Moon	High Definition TV(HDTV)	high-definition movie

Integration of Mission Instruments



Global Mapping of Chemical Composition

X-ray Spectrometer (XRS) Al, Si, Mg, Fe distribution CCD sensors Range 0.5-10keV Spatial Resolution 20 x 20km


X-ray Spectrometer

X-ray Monitor and Calibrator

Gamma-ray Spectrometer (GR U, Th, K, Ca, Ti, Si, Al, Na distribution High- purity Ge Crystal(250cm Range 100 keV-10MeV Spatial resolution 160km

Gannma -ray Spectrometer High Energy Resolution

1.00E+06

Global Mapping of Mineral Assemblage

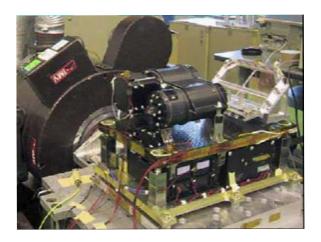
Multi-band Imager (MI) UV-VIS-IR imager Spectral bandwidth ranging from 0.4 to 1.6 µm, 9 filters(bandwidth 10-30 nm) Spatial resolution 20m

Spectral-Profiler (SP) Continuous spectral profile ranging from 0.5 to 2.6µm(spectral sampling 5nm) Spatial resolution 500m

Multi-band Imager

Subsurface Structure and Topography

Lunar Radar Sounder (LRS) Mapping of subsurface structure using active sounding (frequency 5 MHz) **Depth 5 km(Resolution 100m**Main Orbiter RF Transmission (5M Hz. 800W) Reflec tion from S urface Reflec tion from S ubsurf ace Structure Surfa ce

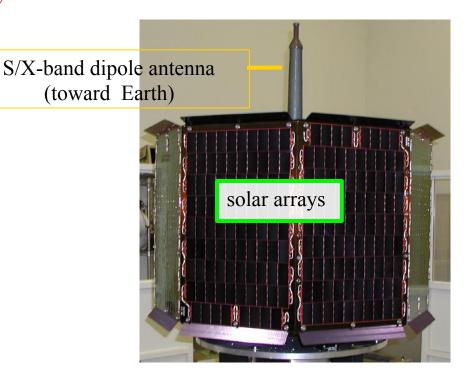

Sub sur fac e S truc ture

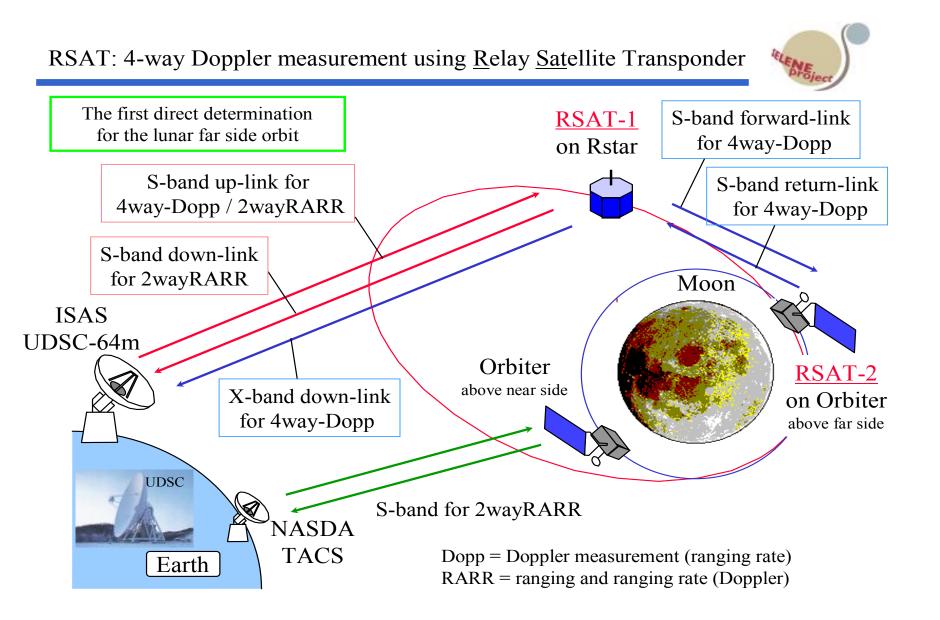
Terrain Camera (TC) Laser Altimeter (LALT) Stereo camera, SpatialNd:YAG+ADP laser altimeter, Footprint 30m resolution 10m Height resolution 5m,

Terrain Camera

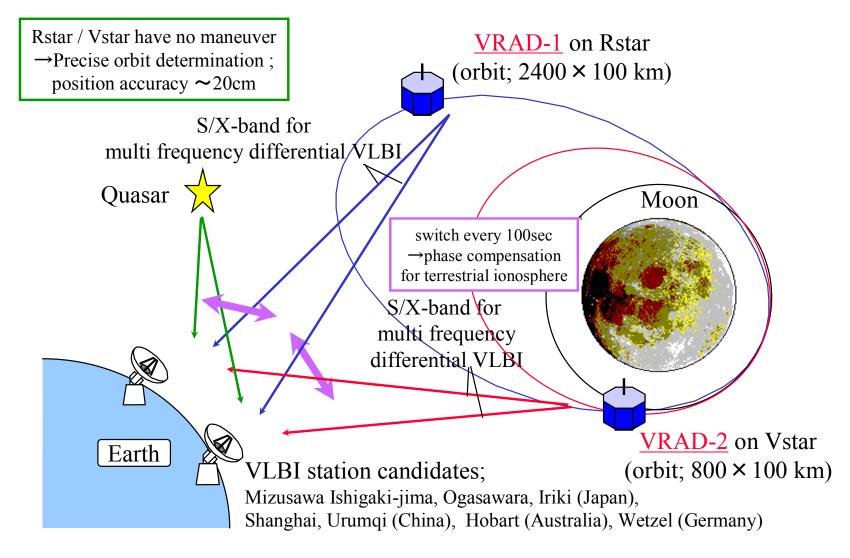
Spatial resolution 1600m

(pulse rate 1Hz)


0



Gravimetry and Selenodesy


Four Way Doppler Measurement by Relay Satellite and Main Orbiter Transponder (RSAT) Far-side gravimetry by Doppler measurement of orbiter via relay satellite (perilune 100km, apolune 2400km in altitude)

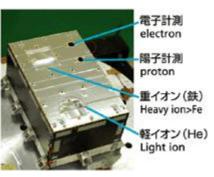
Differential VLBI Radio-Source (VRAD) Three S-band sources and one X-band source Relay satellite and VRAD satellite Differential VLBI observation from ground station(3 stations).

Magnetic Field Measurement

Mapping the distribution of crustal magnetic field and their direction Determination the correlation of magnetic anomalies with surface geology

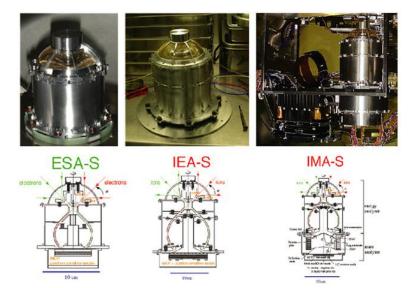
Lunar Magnetometer (LMAG) 3-axis ring-core sensor Precision 0.1nT Mast 12m

12 m mast extended


Electron Reflectometer Electron Energy Analyzer of Plasma Analyzer (PACE) Range 5 eV/q-15 keV/q

Electron Energy Analyzer

Charged Particle Spectrometer (CPS) Measurement of high-energy particle Isotope detector (1-30MeV(LID) and 8-300MeV(HID)) Alpha ray detector 4-6.5MeV



Particle Spectrometer

Alpha Ray Detector

Plasma Energy Angle and Composition Experiment (PACE) Electron energy analyzer 5 eV-15 keV Ion energy analyzer 5 eV/q-28 keV/q Ion mass/energy analyzer 1-60 AMU

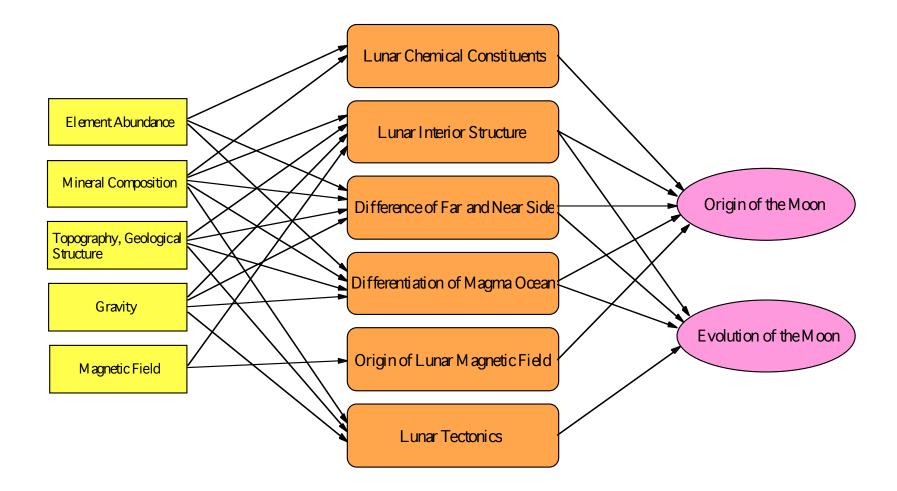
Radio Science (RS) To detect the tenuous lunar ionosphere using S, X-band coherent carriers on VRAD satellite.

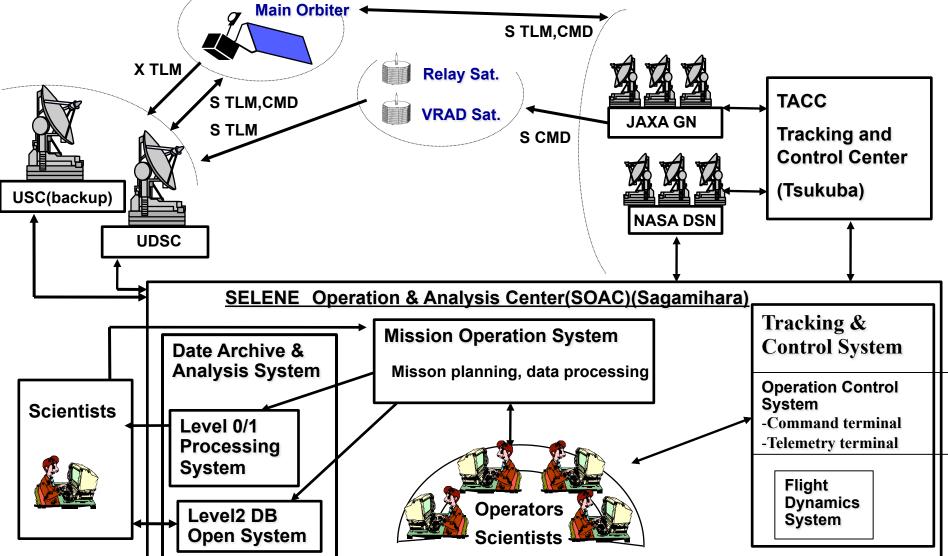
Electron Energy Ion Energy

Ion Mass/Energy

Science from the Moon

Upper-Atmosphere and Plasma Imager (UPI) Observation of plasma dynamics around the earth from lunar orbit, EUV-VIS.


Wave Receiver of Radar Sounder Experiment (LRS) Measurement of plasma waves, radio waves, and planetary radiation, Frequency range 10 Hz to 3 0 MHz.


RELENE Project

Integrated Research for Origin and Evolution of the Moon

Ground System for Flight Operation

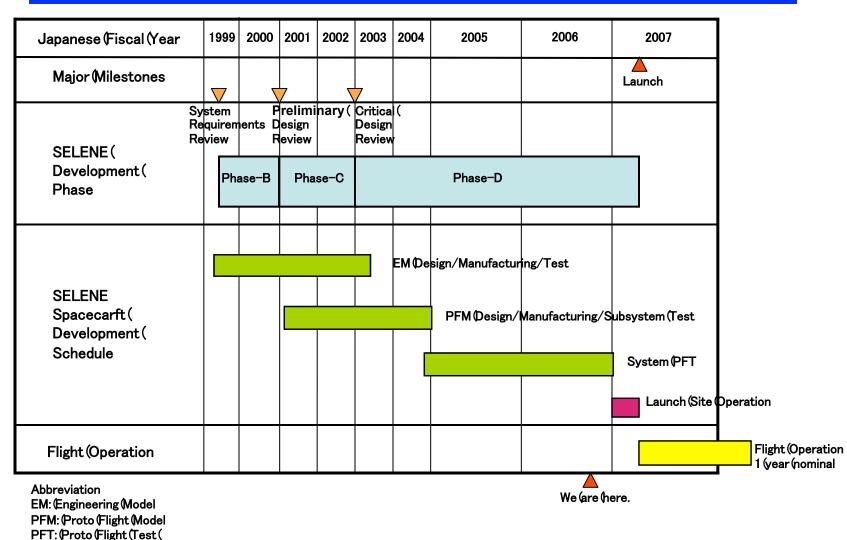
Flight Operation Plan

Launch Launch+3months

Critical Phase Observation Phase Initial Checkout Phas(10 months)

Extra-mission Phase (depending on amount of fue

pre-determined planyearly plan(nominal,off-nominal monthly planplan)weekly plan(timelineupload twice a week)



Weekly Operation

Schedule

Current Status for International Collaboration

- 1. Collaboration with NASA/LRO
- The Statement of Intent (SOI) was mutually agreed and cooperative agreement is under coordination.
- SELENE will develop E-matrices (gravity files) with participation of NASA using the Geodyn software system.
- *E-matrices will be used for LRO mission planning in NASA.*
- SELENE will produce SELENE altimetry data in the format of Planetary Data System (PDS) for LCROSS mission planning in NASA.
- NASA will provide DSN support for SELENE initial mission operation.
- 2. Collaboration with ISRO/Chandrayaan
- A discussion is planned on the cross validation / calibration at Chandrayaan 2nd science working group meeting in India, this February.

Summary and Concluding Remarks

Integration test is almost completed and will be ready for launch in summer this year.

SELENE will provide scientific data that will be used as a common data base for planetary scientists in the world.
SELENE will be a kickoff mission in the series of Japanese lunar exploration and utilization program.

