

Lunar Exploration Mission SELENE

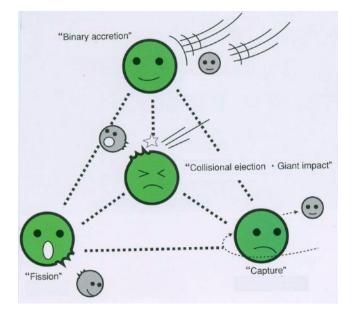
June 2006

- Japanese Moon-orbiting observatory mission,
- Largest lunar exploration after the Apollo program,
- One of the scientific missions of Japanese space agency, JAXA (Japan Aerospace Exploration Agency),
- Science and engineering research,
- Launch scheduled for 2007 by H-IIA rocket.~

<u>Science</u>

1. Science of the Moon

Study of origin and evolution of the Moon


2. Science on the Moon

In-situ measurement of lunar environment

3. Science from the Moon

Observation of solar-terrestrial plasma environment

Site search for future astronomical observation

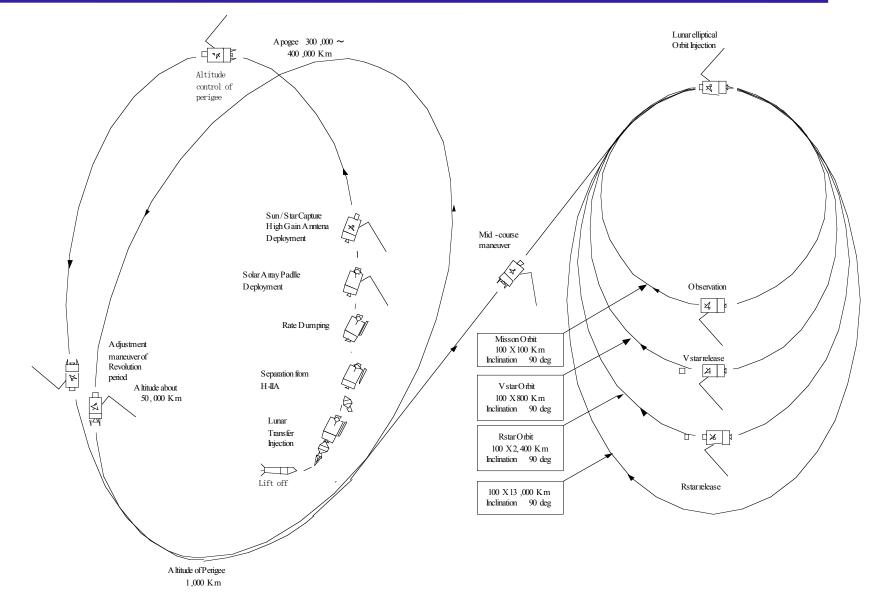
Engineering:

Technology development for future lunar exploration

Outline of the Mission

Orbit

Inclination Main Orbiter : Subsatellite Vstar: Rstar: Total Mass Size Main Orbiter : Subsatellites: Mission period Attitude Control Main Orbiter : Subsatellites:


90 deg (polar orbit)
100 x 100 km (circular)
100 x 800 km (elliptical)
100 x 2400 km (elliptical)
2885 kg (mission payload 300kg)

2.1 x 2.1 x 4.8 m 0.99 x 0.99 x 0.65m 1 year nominal

3 axis controlled spin stabilized

SELENE Mission Profile

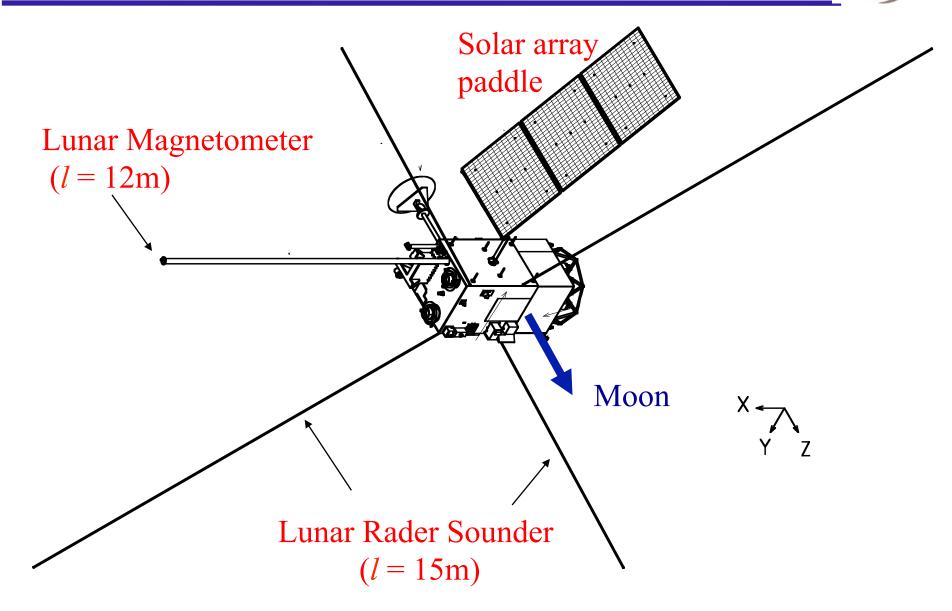
On-Orbit Configuration of SELENE

Main orbiter↑

∼ ← Relay sat. (Rstar)

rojec

←VRAD sat. (Vstar)

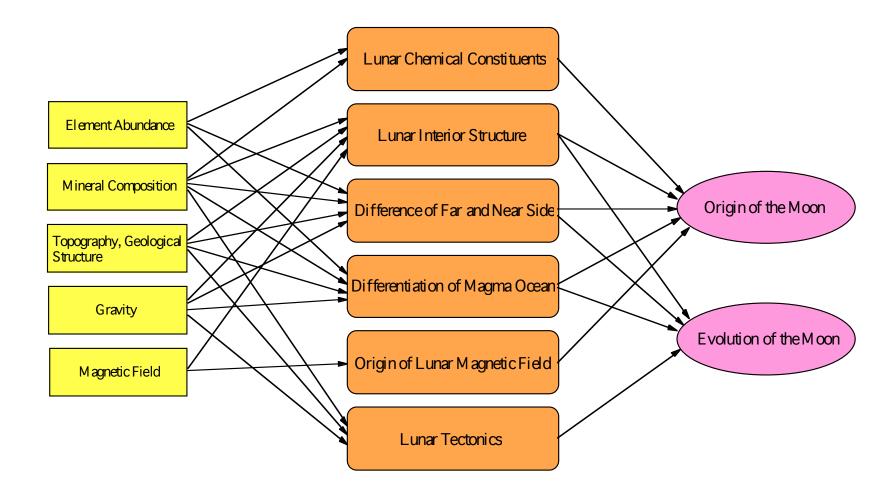

Configuration of SELENE in Lunar Orbit

LMAG Extensible Mast (12m)

LRS Extensible Antenna (15m x4)

~~~On-orbit Configuration of SELENE

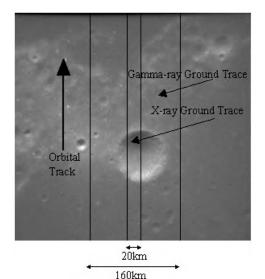
SELENE Bus Component


	SUB System	Specification and Characteristics					
Main Orbiter	TelemetryTracking &Command	Anntena/Frequency:HGA/X-band(mission),S-ant/S-band(telemetry&command) BitRate:1000bps(command),2K/40Kbps(telemetry),10Mbps(mission data)					
	Attitude and Orbit Control Subsystem	Attitude Control:Zero momentum system Three-axis control Attitude Control Accuracy :±0.1deg(three-axis) 4 Skew Reaction Wheel					
	Propulsion Subsystem	Number of Thrusters: 500N×1, 20N×12, 1N×8 Propellant: Nitrogen Tetroxide 335Kg Hydrazine 742Kg					
	Solar Power&Electrical Power Subsystem	1 Wing Rigid panel (with 30 deg cant) Power Generation :More than 3,200W(End of Life,β=0deg) Un-regulated Bus voltage:52.8V~32.6V Battery : Main-Orbiter ;35Ah Ni-Cd Battely×16cells×8units~					
	Data Handling Subsystem	1553B data bus system MDR recording capacity:100Gbit					
VRAD satellite		Mass 50Kg , Elliptical Orbit 100km×800km~ Attitude stabilization :Spin-stabilized, 13Ah Ni-MH Battery×16cells×1unit					
Relay satellite		Mass 50Kg , Elliptical Orbit 100km×2,400km~ Attitude stabilization :Spin-stabilized, 13Ah Ni-MH Battery×16cells×1unit					

SELENE Mission Instruments

Observation	Instrument	Characteristics
Element Abundance	X-ray Spectrometer	CCD 100cm ² , Energy range 0.7~8 keV, Resolution 90 eV, 5µm-Be film, Solar x-ray monitor, Calibrator with sample, Global mapping of Al, Si, Mg, Fe, Spatial resolution 20 km
	Gamma-ray Spectrometer	High purity Ge crystal 250 cm ³ , Energy range 0.1~10 MeV, Resolution 2~3 keV, Stirling refrigerator 80°K, Global mapping of U, Th, K, O, Al, Ca, Fe, Mg, etc., Spatial resolution 130~150 km
Mineral Composition	Multi-band Imager	UV-VIS IR imager, Si-CCD and InGaAs, 9 bands in 0.4~1.6µm(Si: 415,750,900,950,1000; InGaAs: 1000,1050,1250,1550 nm), Band width 20~50 nm, Spatial resolution 20-60 m
	Spectral Profiler	Spectrometer, Si pin photo-diode and InGaAs, Band 0.5 to 2.6µm, Spectrum Sampling 6~8 nm, Spatial resolution 500 m, Calibration by halogen lamp, Observation of standard lunar site
	Terrain Camera	High resolution stereo camera(±15°), Si-CCD, Spatial resolution 10 m
Topography, Geological	Lunar Radar Sounder	Mapping of subsurface structure, Frequency 5 MHz(4~6 MHz swept in 200µs every 50 ms), four-15 m antennas, 5 km depth with 100 m resolution, Observation of natural waves (10 kHz~30 MHz)
Structure	Laser Altimeter	Nd:YAG laser altimeter (1064 nm, 100 mJ, 15 ns), Si-APD, Beam divergence 3 mrad(30 m spot) Height resolution 5 m, Spatial resolution 1600 m (pulse rate 1 Hz)
	Differential VLBI Radio Source	Radio sources on Relay Satellite and VRAD Satellite(3 S-bands, 1 X-band), Several tens of mW, Differential VLBI observation from ground (3 stations or more)
Gravity Field	Relay Satellite	Far-side gravimetry using 4 way Doppler measurement, S uplink, S spacelink, X downlink, Perilune 100 km and Apolune 2400 km at orbit injection, Doppler accuracy 1 mm/s(10 sec)
Magnetic Field	Lunar Magnetometer	3- axis flux gate magnetometer, Accuracy 0.5 nT, 32 Hz sampling, Mast 12 m, Alignment monitor
Lunar	Charged Particle Spectrometer	Measurement of high energy particles, Si-detectors, Wide energy range 1.8~28(p), 4~113 MeV(Fe), High energy range 50~430 MeV(Fe), Alpha particle detector 4~6.5 MeV, 400 cm ²
Environment	Plasma Analyzer	Plasma energy and composition measurement, 5 eV/q~28 keV/q(ion), 5 eV~17 keV(electron)
	Radio Science	Detection of tenuous lunar ionosphere using S and X band coherent carriers
Earth Ionosphere	Plasma Imager	Observation of plasmasphere and aurora, XUV(834 Å) and visible(5 bands)
Earth	High Density TV	Observation of the earth in a super-high resolution, for publicity and educational purposes

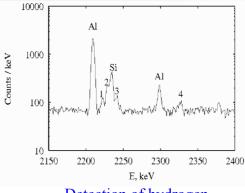
Integrated Research for Origin and Evolution of the Moon,



Global Mapping of Chemical Composition

X-ray Spectrometer

Al, Si, Mg, Fe distribution CCD sensors Range 0.5-10keV Spatial Resolution 20 x 20km



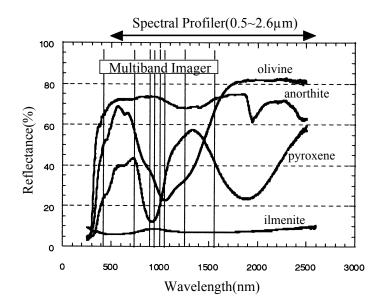
Ground trace of XRS and GRS

Gamma-ray Spectrometer

U, Th, K, Ca, Ti, Si, Al, Na distribution High- purity Ge Crystal(250cm³) Range 100 keV-10MeV Spatial resolution 160km

Detection of hydrogen

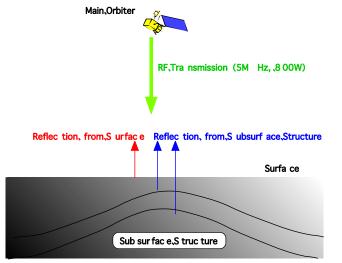
Global Mapping of Mineral Assemblage,


Multi-band Imager

UV-VIS-IR imager Spectral bandwidth ranging from 0.4 to 1.6 μm, 9 filters(bandwidth 10-30 nm) Spatial resolution 20m

Spectral-Profiler

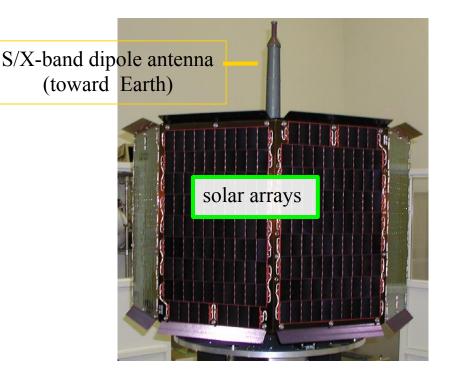
Continuous spectral profile ranging from 0.5 to 2.6µm(spectral sampling 5nm) Spatial resolution 500m,

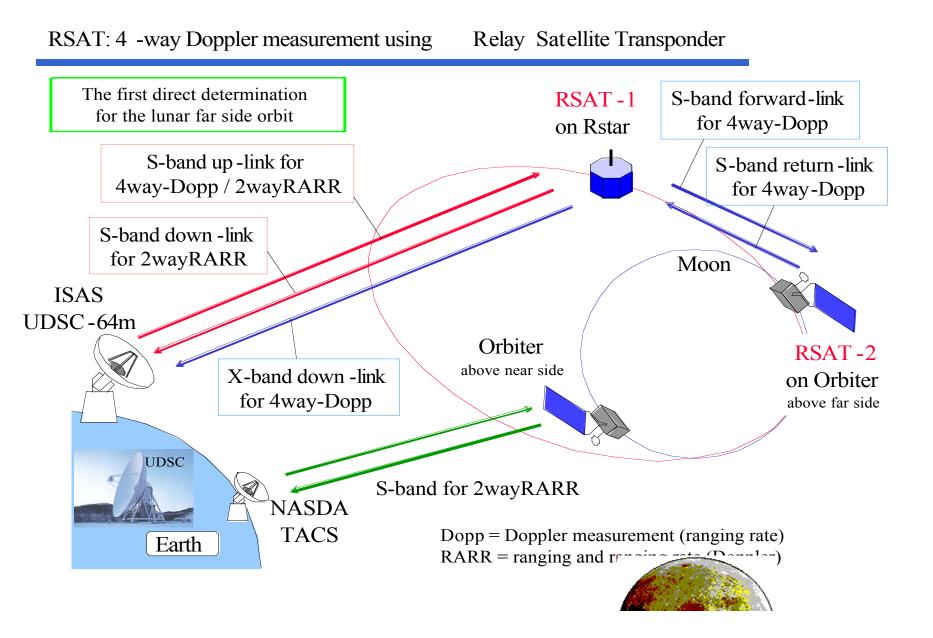

Typical reflectance spectrum of mineral

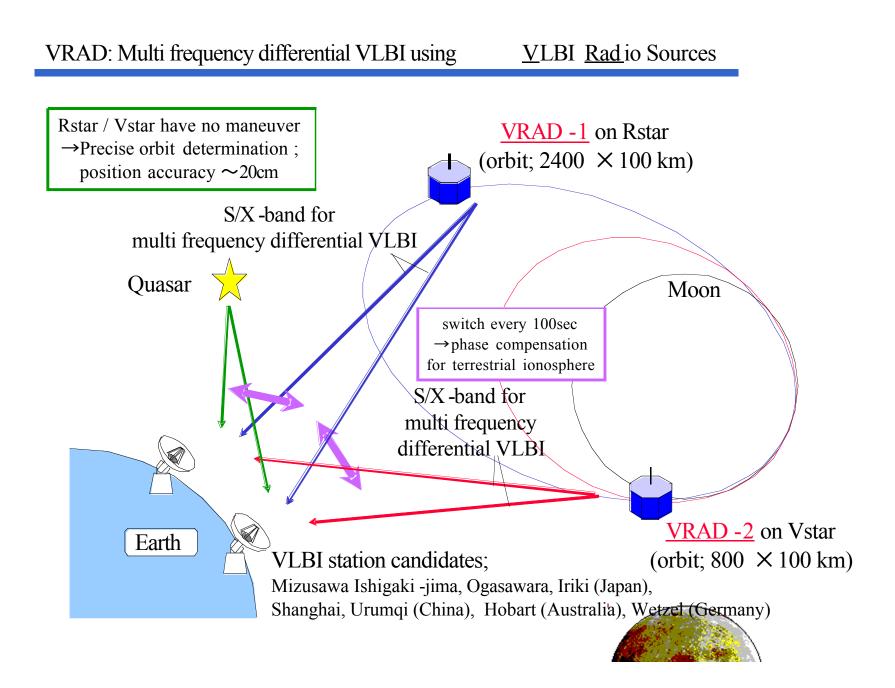
Subsurface Structure and Topography

Radar- Soundar Mapping of subsurface structure using active sounding (frequency 5 MHz) Depth 5 km(Resolution 100m) Topographic Camera Topography, Spatial resolution 10m~

Laser Altimeter Nd:YAG+ADP laser altimeter, Footprint 30m Height resolution 5m, Spatial resolution 1600m (pulse rate 1Hz)

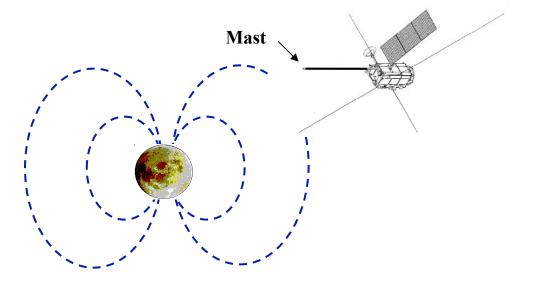

Gravimetry and Selenodesy,


Relay Satellite


Far-side gravimetry by Doppler measurement of orbiter via relay satellite (perilune 100km, apolune 2400km in altitude)

Differential VLBI Radio-Sources

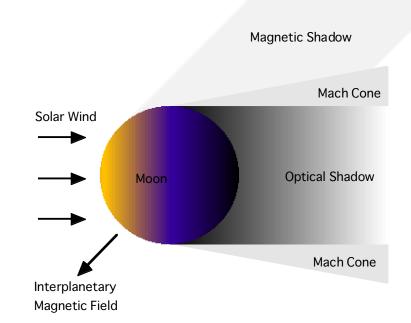
Three S-band sources and one X-band source Relay satellite and VRAD satellite Differential VLBI observation from ground station(3 stations).


Magnetic Field Measurement

Mapping the distribution of crustal magnetic field and their direction Determination the correlation of magnetic anomalies with surface geology

> Magnetometer 3-axis fluxgate Precision 0.5 nT Mast 12m

Electron Detector of Plasma Analyzer Range 10 eV/q-30 keV/q

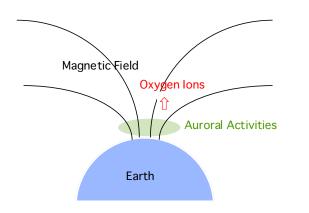

Charged Particle Spectrometer Measurement of high-energy particle Isotope detector (1-30MeV(LID) and 8-300MeV(HID)) Alpha ray detector 4-6.5MeV

Plasma Analyzer

Electron energy analyzer 5 eV-17 keV Ion energy analyzer 5 eV/q-28 keV/q Ion mass/energy analyzer 1-60 AMU

Radio Science

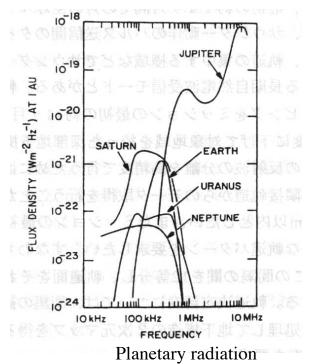
To detect the tenuous lunar ionosphere using S, X-band coherent carriers on VRAD satellite.

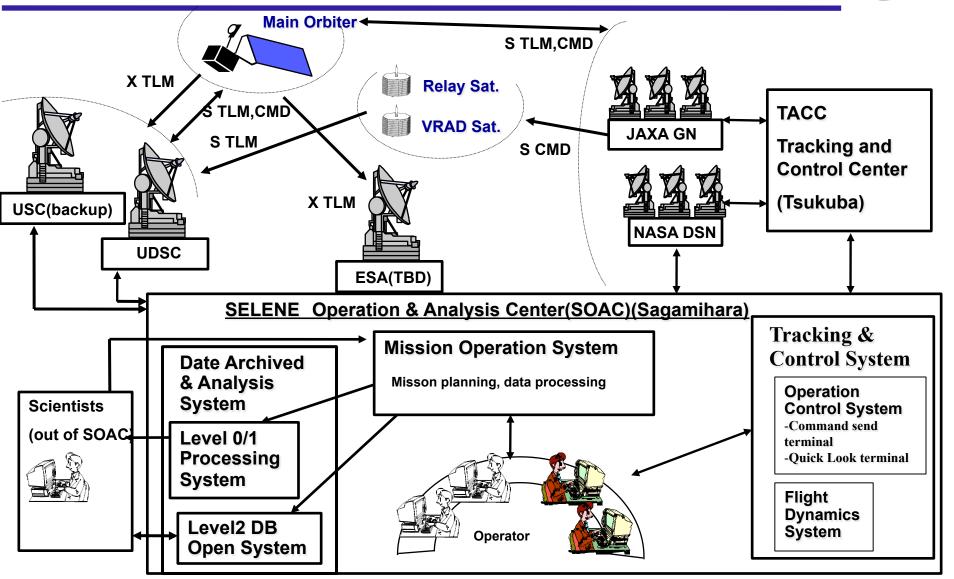


Study of plasma environment around the Moon

Science from the Moon

Plasma Imager


Observation of plasma dynamics around the earth from lunar orbit, EUV-VIS.

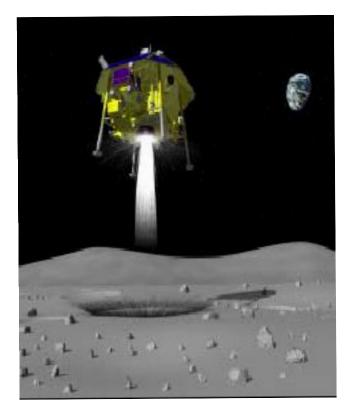

Observation of the earth magnetosphere from the lunar orbit,

Wave Receiver of Radar Sounder Experiment

Measurement of plasma waves, radio waves, and planetary radiation, Frequency range 10 Hz to 3 0 MHz.

~~~SELENE Ground System Configuration

Schedule


Japanese Fiscal Year	~ F	Y11	FY12⁄	FY13	FY14	FY15	FY16	~ FY	′17~	FY18~	FY19~
Major Milestones \sim	7	\checkmark		7							Launch~
SELENE ~	Requ	irem~ wirem ew~	ents P	relimi esign≏ eview^	• -	€ritica Design Review	~				
Development ~ Phase~		Phase-B~ Phase-C~ Phase-D~									
							EM De	sign/Ma	nufactur	ing∕Test∼	
SELENE~ Spacecarft ~ Development ~		PFM Design/Manufacturing/Su							ubsystem Test~		
Schedule~											System PFT~
											Launch Operatio

Abbreviation~ EM: Engineering Model~ PFM: Proto Flight Model~ PFT: Proto Flight Test ~ @As of October 2005~

JAXA Vision Overall Roadmap

20	05 2010	2015	2020	2025				
Space utilization to provide solutions to the issues of the	Disaster risk management system		ency, high -resoluti ination of warnings					
society	Establishment of observation means for climate change		nent at subcontinen n of its results in reg					
Space observation, Solar system exploration	Deployment of a telescope and launch of space science missions	vation - Observ - Search ration - Reach	n for a sign of life or	laxy and black hole Earth -type planets of the solar system				
Lunar exploration and utilization	Development and demonstration of Lunar remote -sensing missions for lunar exploration and utilization							
Human space activities	Accumulation of technologies mainly through the ISS							
Space transportion system	 Improvement of reliability for transportation system Development of technologic a human space transportation 	or Practivehic vehic es for Estab	cal use of technolo					
		ment of "Human - passenger aircraft	, Development o	f "Intelligent aircraft"				
Aviation	supersonic aircraft	al use of supersonic technology stration of technology personic aircraft	Development of a passenger aircrat cooperation Demonstration of hypersonic aircrat	ft through international ftechnologies for				
	- "	▼:	Decision by the	government \sim				



Technology development – Guidance, Navigation & Control System for pinpoint landing

- Autonomous obstacle
- detection & avoidance
- system for safe landing
- Landing Gear to absorb the impact energy of landing
- Rover system to probe the Moon surface ~

Future Scenario –Lunar Rover

Lunar Surface Exploration – Geological survey to investigate Lunar evolution – Characterization of the Lunar surface environmental condition Data Collection for future Lunar Utilization

- Lunar Observatory
- Temporal Lunar base
- Permanent Lunar Base, etc. ~

Summary and Concluding Remarks

-Configuration of SELENE (without Solar Array Paddle and Rstar/Vstar)

- Moon-orbiting observatory mission, "SELENE", will carry 15 mission instruments.
- SELENE will provide scientific data to clarify the origin and evolution of the Moon, which will be used as a common data base for planetary scientists in the world.
- SELENE will be a kick-off mission in the series of Japanese lunar exploration and utilization program.