「宇宙太陽光発電システム(SSPS)のシステム検討例」

~テザー方式SSPSの構造、姿勢、電力管理、熱制御の検討~

1.システムの特性 2.構造と構築方法

3. 熱道と姿勢 4. 電力管理と熱制御 5. 技術的課題

日本太陽エネルギー学会主催 SPS講演会 2015年12月3日

部分に分けて宇宙に運ぶ。

宇宙で組立。発生した電気は電波 で地上に送る。

地上の太陽光発電所

宇宙での太陽光のエネルギー取得の効率は、地上太陽 光利用の場合の5~10倍。一方電波による無線送受電 の効率は50%が期待できる。 発電に天候の影響を受けない(不確定さがない)

クリーンで大規模なエネルギーシステムの可能性 •EPT(Energy Payback Time):数年以下(試算) •コスト:10~30円/kWh(試算)

•CO₂負荷:化石燃料火力発電の数十分の一以下(試算) •取得可能エネルギー:実質的に無制約

SSPSが発案された当時のコンセプトと技術的チャレンジ

これまでの代表的な宇宙太陽光発電システム(SSPS)の設計例

1. テザー方式SSPSのシステムの特性

テザー方式SSPSのシステム設計の考え方

宇宙太陽光発電システム(SSPS)のシステムの選択肢

事項	方式	長所	短所	
送電媒体	マイクロ波送電	高い大気圏透過率、天候の影響小	送受電システムの大きさ大	
	レーザー送電	送受電システムの大きさ小	低い大気圏透過率、天候の影響大	
電力システム	バス電力型(発電部・送電部分離)	統合的な電力管理が容易	大電力配線・接続が必要	
	発送電一体型(サンドイッチパネル)	大電力配線・接続が不要	熱的条件が厳しい	
発電方式	太陽電池パネル駆動による太陽追尾型	太陽指向可能	ロータリジョイントの技術的困難さ	
	ミラーによる太陽追尾型	太陽指向可能	軽量ミラーの技術的困難さ	
	太陽非追尾(地球指向)	システムが簡素	電力収集効率小、発電の時間的変化	
姿勢維持	能動制御	太陽指向可能	燃料が必要、制御方法が課題	
	重力安定(テザー地球指向)	燃料不要、制御システム不要	太陽指向に不適	

テザー方式SSPSの設計思想:<u>実用化の初段階のシステム</u>として、エネルギー取得効 率は相対的に低くても、<u>技術的バリヤーの低い(現状技術の延長線上にある)</u>システ ム構成を選択したタイプ。

テザー方式SSPSの形態とシステムの特徴

- 能動的な姿勢制御機能は持たない、可 動機構は持たない
- ➡単純でロバスト性の高い構造と機構
- 電力的に独立な発電送電一体型モジュール(電力は大規模に集電せず、分散したままマイクロ波に変換)

➡高度なモジュール構成

■ 情報は無線LANによる集中制御
■ 高度な運用管理

設計された100万kWテザー方式SSPSの例

発送電パネルのサイズ: 2.5 km x2.4 km 重力安定化用のテザーの長さ: 5-10 km 総重量: 20,000-27,000 トン 同一形状のサブパネル(約100m四方)25x25枚で構成

テザー方式SSPSの構成

構造の単位(ユニットパネル)

最終形態としてバス部を1ヶにまとめた形態:シングルバス方式 ⇒安定性に富む 最終形態としてバス部を複数とした形態:マルチバス方式 ⇒ユニット性が高く着脱運用が容易

テザー方式SSPSの基本単位(ユニットパネル)

全重量: パネル重量: バスシステム重量 マイクロ波出力: テザー長: 重力傾斜力: 42.5 MT 40 MT 2 MT 2.2 MW 5–10 km 0.337 N

ユニットパネルを構成するモジュールの構造の設計例

モジュール:0.5m x 0.5m x 0.02 m 重量:1.060 kg

マイクロ波回路(制御、電源、アンテナ部を含む、55.5 W): 太陽電池(太陽電池、電源部への計装を含む、118.1 W): 蓄電部(362.5 Wh):

構造部材(ハニカム、機構部、他)

277.5 g(5 g/W) 120 g(1.016 g/W) 517.9g(700Wh/kg) 144.6 (0.029 g/cc)

構造の基本単位は、0/5 m x 5 m(10モジュール)

宇宙に大型の構造物を構築する技術(テザーの展開)(

これれまで行われた宇宙テザー実験(計画のみのものも含む)。 10km以上の長さのテザーはこれまで複数回実証され、10kmテザーシステムは既存 技術であると言える。

宇宙に大型の構造物を構築する技術(パネルの展開)(

パネルを組み立てながら展出する方式

パネルを自動で自己展開する方式

テザー方式太陽発電衛星の建設方法

テザー方式SSPSの軌道の選択

	軌道	<i>これまで検討</i> <i>された軌道例</i>	<u>軌道の特</u> 性	受電頻度	送電アンテ ナのサイズ	<i>輸送</i> コスト	例
選択	<i>静止衛星</i> 軌道	36,000km	常時可視	常時	大(低軌道 の数十倍)	高	NASA リファレンスシステム ²⁾ NEDO グランドデザイン ³⁾ NASDA2001 年モデル ⁴⁾ NASA ISC ⁵⁾ USEF テザーSPS モデル ⁶⁾
	太陽同期 軌道	<i>軌道傾斜角 100 度程度 LEO</i>	常時日照	1 回/1 日(軌跡 が交差する場 合は 2 回/日)	中	中	サンタワー(太陽同期タイプ)
	<i>位相同期 低高度軌 道</i>	軌道傾斜角 90 度以下 高度 370km	日陰あり	1回/数日	//	低	USEF テザー型 SPS 実証実 験モデル [®] ISAS 小型衛星実験モデル [®]
	<i>低高度赤</i> <i>道軌道</i>	1,100km	<i>最大日陰</i> <i>率 1/3</i>	約 2 時間の間 隔	小	低	SPS 2000 ¹⁰⁾

静止衛星軌道上3ヶ所使用すれば、人口の 90%の領域をサービスできる。

Perspectives Space Solar Power, J.C.Mankins 2010, IAA Nagoya WS

システムの安定性

バスの位置をLine毎に変化させてパネルが屈曲し ない条件が見いだされている(泉田)。 鉛直方向のバス部の高さをLine1、Line5で 3735m(系の重心からの高さ)、Line2,Line4で 4735m、Lin3で6735mとすれば安定。 固有値解析によれば、パネルの振動周期は 軌道運動の1.3-2倍程度となる(石村)。 1次モードの振幅は約0.4mである。

太陽輻射圧による軌道擾乱

太陽輻射圧: 4.6 x10⁻⁶ N/m² 発送電一体型パネル反射率: 0.5 働く力(最大値): 26 N 短周期摂動(1日以下): 1000 m 長周期摂動(東西、1年): 0.74[°] 軌道維持用燃料(電気推進): 17トン(年間)

テザー方式SSPSへのデブリ・マイクロメテオロイド衝突対策

パネルへの衝突頻度 10cm以上 200年間に全パネル1回 1cm以上 1年に全パネル1回 1mm以上 30年間で100m²に1回

テザーへの衝突頻度 1mmのワイヤ 3年で全て切断 10mm幅テープ 30年で1%の本数が切断

パネルでの対策

・高速浮遊物の衝突の影響は浮遊物のサイズの10 倍程度に及ぶことを想定してモジュール設計(モ ジュール外には故障が伝搬しない設計)。この観点 から、モジュルサイズは0.5mx0.5mとしている。

テザーでの対策

•1%程度の本数のワイヤーの切断は許容するよう 冗長設計。

静止衛星軌道は既に沢山の衛星で混雑、対策は?

巨大なパネル構造を持つテザー型SSPSに、他の通信インフラや 地球観測インフラを取り込むことが可能(軌道上複合インフラ)。 あるいは、異なる機能の衛星を接続することにより、静止衛星軌 道を有効に利用することが可能(スペースベルト)。

エネルギー、通信、観測インフラ、メンテナンス 設備のコンプレックス(静止衛星軌道上)

見力管理と熱制御

ローカルタイムで発電量が変化する(地球指向のため)。

パネル両面に太陽電池を装着する場合、太陽指向方式に対し平均で 64%の電力取得量となる。

天候による影響はないので、変動は規則的で不確定さはない。 単位重量当たりの蓄積エネルギーの高い蓄電装置(500Wh/kg以上程 度)が実用化すれば、パネル内で平滑することも考えられるが、実用の 初段階では変動電力システムとして導入することが現実的。

テザー方式SSPSのエネルギーフロー(出力一定タイプ)

	電力(/m²)*	総電力	備考
太陽光強度	1,350 W(max)	8.0 GW	夏·冬はx 0.92(平均は0.97)
発電ピーク	473 W(表)	2,8 GW(表)	裏側太陽電池面積は表側の90%、太陽電
	<i>425 W(裏)</i>	2,5 GW(裏)	<i>池効率35 %</i>
バッテリーへの蓄積	1000 Wh	5.9 GWh	平滑60 %、充放電効率90 %、ピーク電力の
送電系への電力	270 W	1,6 GW	25%以下は充電せず
送電電力	228 W	1,4 GW	マイクロ波への変換効率85 %
レクテナ入力	-	1,2 GW	伝播効率97 %、収集効率90 %
レクテナ出力	-	1 GW	DC電力への変換効率85 %

*:1m²は4モジュール分(1モジュール=0.5 m x 0.5 m)

ヒーターを使用することにより電子回路部を-40℃~+60℃の範囲に入れることができる

テザー方式SSPSパネルの熱歪み対策の案

受動的方法

パネル間にギャップを設けることにより、熱変形がパネル間を伝搬し大き くなることを防止する。熱変形を伝搬 させないためには、サブパネル間の ギャップを 0.6mm以上とれば良い。

パネル間角度検出器と駆動機構の組 み合わせ(スマートアクチュエーター)を 用いてパネル間の角度を制御する。 巨大なパネル全体では、非常に多くの 駆動機構が必要である。モーターの代 わりに形状記憶素子を用いることにより、 モーターよりはるかに軽量の駆動機構 を実現できることが、実験室での実験で 示されている。

テザー方式SSPSの技術的課題

(構造分野)

- 1. 95mx100mサブパネルの展開方法
- 2. サブパネル同士の脱着(ラッチ・アンラッチ)方法
- 3. 微小テンションテザーの伸展方法とダイナミクスの検討
- 4. 建設途上での姿勢安定性の確保(サブパネル接続の順序)
- 5. 軌道維持方法(推進機の取り付け場所と動作時のダイナミクス)

(電力分野)

- 6. 各モジュールのマイクロ波原振の位相同期の方法(バス同士の 同期と各バスとパネル上モジュールの同期の階層化)
- 7. マイクロ波の一様放射の場合の電磁干渉防止(テーパーをつけ た場合より漏れ電力(サイドローブ)が大きい)

テザー方式SSPS (出力1GW)が成立するための技術目標

事項	コスト・性能	最終目標	近未来の目標	現状	備考
太陽電池	コスト	50 円/ W	100 円/ W	数百円/W	at 1 kW∕ m²
	効率	35 %	20 ~ 25 %	10~20 %	
	重量比	2 W/g	1.5 W/g	1 W/g	薄膜、ベアであれば既に 5W/gのものあり
<i>マイクロ波 回路</i>	コスト	100 円∕ W	500 円/ W	1000~10,000 円/W	
	効率	<i>85 %</i>	60 %	40 %	
	重量比	0.1 W/g	0.02 W/g	0.01 W/g	
蓄電	コスト	10 円/Wh	50 円/Wh	100 円/Wh	
	重量比	0.5-1 kWh/kg	0,4 kWh/kg	0.2 kWh/kg	
	充放電効率	90 %	85 %	70 ~ 80 %	DOD 50 % 寿命充放電3万回(40年)
輸送コスト	重量比(打ち上げ)	10,000 円/ kg	500,000 円/kg	500,000—1,000,000 円/ kg	
	重量比(軌道間輸送)	5,000 円/ kg			打ち上げコストの50 %
レクテナ	コスト	50 円/ W			
		85 %	75 %	50~70 %	

技術的なバリヤーが低いモデルとはいえ、目標技術に達するには、本格的で 継続的な技術開発の努力が必要

SSPSを建設する為に必要なロケット

