SSPSの研究現状と技術課題について

講演内容

1. 太陽発電衛星の概念と研究の歴史 2. 太陽発電衛星実現に必要な技術と課題 3. 我が国で検討中の太陽発電衛星の構 想と実現へのロードマップ

4. 研究現状と近未来の実証実験の計画

用語 宇宙太陽光発電システム=太陽発電衛星,宇宙太陽発電所 SPS(Solar Power Satellite) SSPS(Space Solar Power Systems)

1. 太陽発電衛星の概念と研究の歴史

•エネルギー問題と地球環境問題

・太陽発電衛星の概念と特徴

・太陽発電衛星の研究の歴史

・過去の太陽発電衛星の代表的な設計例

人類とエネルギーのかかわり

世界のエネルギー資源確認埋蔵量

出典:(1)BP統計2004 (2)URANIUM2003

・化石燃料は0.02%の変換効率で太陽エネルギーを2億年かけて蓄 積。人類はこれをわずか100~150年で使い切ろうとしている。 ・石油の残存量(1兆バレル)は富士山を逆さにした容器として見立 てるとその1/8程度しかない。

出典:総合研究開発機構「エネルギーを考える」

化石燃料からのCO2排出量と大気中のCO2濃度の変化

出典:環境省資料、気象庁資料、エネルギー・経済統計要覧 2003年版

宇宙空間における太陽のエネルギー量

太陽からの地球へのエネルギーは 1.77x10¹⁷Watt

現在の人類のエネルギーの消費量の 15.000倍

→太陽エネルギーは人類のエネルギー 源として大きな可能性を持っている。

地球周辺の宇宙空間での太陽光のエネル ギー密度は1,350W/m²

地上での太陽光の年間平均エネルギー密 度は100~200W/m²

理由:夜の存在、曇天・雨天の存在、大 気による減衰

➡ 宇宙空間から地上への効率の良い電 力輸送が可能であれば宇宙空間を太陽エ ネルギー取得の場として利用することが 有望。

宇宙発電衛星(SPS)の原理と構成

宇宙太陽発電所の原理とエネルギーシステムとしての特徴

宇宙での太陽光からのエネルギー取得の効率は地 上太陽光利用の場合の5~10倍。一方無線送受 電の効率は50%が期待できる。

従ってこのシステムは地上の太陽光利用に比べ2. 5~5倍の高い効率で変動のない電力を供給でき る可能性を持っている。

クリーンで大規模なエネルギーシステムの可能性

- EPT(Energy Payback Time):数年以下
- コスト:10~30円/kwH
- ・CO2負荷:化石燃料火力発電の数十分の一以下
- ・取得可能エネルギー:実質的に無制約

無線送電に必要な効率

地上太陽光システム

P(太陽光エネルギー密度) $A(面積) \rightarrow \alpha AP(出力)$ 建設費C (α :発電効率)

宇宙太陽光システム

10P (太陽光エネルギー密度) A(面積) 建設費C+Cs (Cslt宇宙に建設するために) (Cslt宇宙に建設するために)必要となる無線送電費、輸送 費等を含む、地上システムと比 較して追加の経費) 建設費Cg

電力単価の比較(運用寿命・運用経費を同じと仮定)

(宇宙太陽光システムの電力コスト) < (地上太 陽光システムの電力コスト) より、 (C+Cs+Cg)/(10 α η AP)<C/(α PA)</p>

従って、	
η>0.1+(Cs+Cg)/10C=0.1+x	
米リファレンスシステム	x=0.5
NASDAモデル	x=0.6
USEFモデル	x=0.5
即ち η>(0.6-0.7)が必要	

マイクロ波 *n*=0.8x0.97x0.85=0.66 レーザー *n*=1.14x0.35x0.65=0.26 (太陽光直接励起レーザー効率40%、太陽電池 効率35%として)

太陽発電衛星システムのエネルギーペイバックタイム

システム	SPS		地上システム
SPSの製造場所	<i>地球周</i> 回軌道	月面	地上
投入エネルギー[10ºMJ](A)	53	37	<i>8. 2</i>
モジュール製造	22	22	<i>8. 2</i>
モジュール輸送	31	5.1	_
年間発電量[10ºWh/年]	7.88	7.88	1. 23
ー次エネルギー換算[10 ^e MJ/年](B)	76.7	76.7	12.0
	0.69	0.35	0. 68

山田、加藤、第1回SPSシンポジウム、平成11年

太陽発電衛星のCO2負荷

(g-C 0 2/kW h)

発電方式	経常運転時	建設時	合計
太陽発電衛星	0	20	20
石炭火力発電	1222	3	1225
石油火力発電	844	2	846
LNG 火力発電	629	2	631
原子力発電	19	3	22

吉岡、菅、野村、朝倉、第1回SPSシンポジウム、平成11年

ピーターグレーザーの特許公告

宇宙太陽発電所研究の歴史

ピーターグレーザーのサイエンスの論文 1968年 "効率的で安全なマイクロ波ビームによる雷力伝送、宇宙空間における電 カプラント"の概念、特許化(1973年) 1970年代 NASA/DOE (US Department of Energy) リファレンスシステム 1977-1980 NASA 約2000万ドルを投じ概念設計 1978 DOE SPS Concept Development and Evaluation Program(CDEP) 米国でのシステム的研究はレーガン政権の財政緊縮方針中断 1980年 1983年 観測ロケットによるマイクロ波送電実験(世界初) 環境問題のたかまり、エネルギーオプションの必要性から 1990年代 再注目 1990年 宇宙科学研究所SPS2000研究スタート NASA研究再開(-2004) 1995年 1999年~ NASDA調査研究(現JAXA), USEF調査研究 2009年 宇宙基本計画に宇宙太陽光発電の研究開発を明記

赤字:我が国の事項

SPSの古典的なモデル 出力5GW 重量5万トン 面積5kmx10km 厚さ0.5km 送電アンテナ直径1km

宇宙科学研究所のSPS2000モデル

日本で初めての本格的なSPSの設計研究

事項	諸元
軌道	赤道軌道高度1,100 km
構造	断面330 m の正三角形、長さ300 m
姿勢制御	重力安定
組み立て	自動展開及び組み立てロボットの組合せ
発電電力	1万6千kW
発電電圧	1,000 V
地上受電電力	1万 kW
送電媒体	マイクロ波 2.4 GHz
送電アンテナ	フェイズドアレイによるビーム方向制御
地上受電アンテナ	リフレクタ付きワイヤーアンテナ
総重量	240 トン
打ち上げロケット	アリアンV(16 回のフライト)
運用	日照時のみ送電
寿命	10 年以上

NASAのサンタワー

NASAの研究再開時の スタディモデル 出力100~300MW 高さ15km 集光ミラー直径60m 送電アンテナ250m

2. 太陽発電衛星実現に必要な技術と課題

・主要技術の現状と目標

- 宇宙発電技術
- 無線送電技術
- · 大型構造物構築技術
- ・打ち上げ輸送技術

SPS実現のための主要技術の目標

主要な技術	現状の到達レベル	目標レベル	ファクター
宇宙太陽光発電	数十kW(国際宇宙ステーションで80kW)	GW	10, 000
発生電圧(バス電圧)	100~150V	1kV以上	10
マイクロ波送電	数十kW(地上)、1kW(宇宙)	GW	100, 000
排熱	数十k₩	数百MW	10, 000
大型構造物	100mクラス(国際宇宙ステーション)	数km	10
宇宙輸送のコスト	100~200万円/kg	1万円/kg	1/100

		宇宙太陽発電技術としての技術開発				
技術課題	前提となる 産業技術・ 宇宙技術	要素技術開発・ 評価・実験室実 験	地上 実証 実験	軌道上実証実験 (10MW程度以下)	パイロットプラント(100 MWクラス)	
高効率(比重量、 比面積)、低コスト 太陽電池	産業用太陽 電池の高効 率、低コスト 化	_	-	_	_	
太陽電池の耐宇 宙環境性	_	放射線照射実験 対デブリ耐性評価 高電圧放電評価 実験	耐放射線性実証 _ 対デブリ耐性実証 宇宙高電圧発電技術 実証		_	
オプション技術(熱 発電)の可能性	地上用熱発 電技術の実 用化	効率、コスト、寿命 評価	_	_	_	

太陽発電衛星用の耐宇宙環境性

高い宇宙放射線耐性 *⇔耐性の高いタイプのセル選定*

デブリとの衝突破壊を考慮した設計 ⇔故障が伝搬しないモジュール化設計

太陽電池の種類と太陽発電衛星用として有望なタイプ

薄膜、フレキシブル、軽量、高効率(重量当たりの電力)

型	種類	特徴	技術的課題	SSPS用としての評価
バルク型	<i>Si(単結晶、</i> 多結晶)	現在の生産の主流	技術的に成熟に近い	重量あたりの出力が低 い
	III-V族結 晶化合物	<i>超高効率</i> 宇宙用、高コスト	更なる高効率化(40%目標) 集光系との組み合わせで低コス ト化。但し、集光システムの重 量を考慮し、放熱を検討する必 要有り。	資源的制約(Ge, In)集 光系との組み合わせで 可能性有り。但し、正 確な太陽指向が必要
*薄膜型 (10µm以 下)	アモルファ スシリコン	<i>量産性、低コスト、 製品としての先行</i>	効率改善(10%->12%) 大面積化、安定化、高速製膜、 高い歩留まり、ロール化	当面有力
	CdTe	構造が簡単で安定 性が高い 低コストの可能性	常圧下でのCdTe 膜の形成技術、 高品質化、大面積化	資源的制約(Cd, Te)
	CIS	高効率、長寿命、 耐放射線性に優れ る	<i>バンドギャッププロファイルの 最適化、均一性</i>	資源的制約(In) 将来有望
	<i>多結晶シリ コン</i>	<i>ハイブリット型で</i> の組み合わせ	歩留まりの良い多結晶膜	
	化合物	高効率(25%)	コスト、放射線性の検証	新規、今後の展開待ち

世界の太陽電池の生産量と推移

日本政策投資銀行、今週のトピックスNo.122-1,2008年4月 www.dbj.jp/reportshift/topics/pdf/no122.pdf

世界の太陽電池生産量(PHOTON International March 2005)

		宇宙太陽発電技術としての技術開発				
技術課題	前提となる産業技術・ 宇宙技術	<i>要素技術開</i> 発・評価・実 験室実験	地上実証実 験	軌道上実証実験 (10MW程度以下)	パイロットプラント (100MWクラス)	
<i>マイクロ波ビーム</i> <i>制御</i>	レーダー技術の <i>発展</i>	ビーム制御 技術の開発	数百m~ 数kmでの 送電実証	数百 k m 伝送、 軌道条件での ビーム制御実証、 電離層通過実証	数千km~数万 km伝送、軌道 条件でのビー ム制御実証	
高効率・低コストマ イクロ波増幅・制御	携帯電話など通 信産業がリードす る高効率・低コス ト・低損失マイクロ 波素子の開発	システムとし ての高効率・ 低損失回路 技術の開発	_	_	_	
オプション技術(光 送電)の可能性	レーザー <i>産業技</i> <i>術の発展</i>	効率、コスト、 耐久性評価	_	_	_	

赤字:SPSのコンフィギュレーションに強く依存しない共通技術、コア技術 青字:オプション技術またはSPSのコンフィギュレーションに強く依存する技術

無線送電方法	マイクロ波	レーザー
周波数/波長	~several GHz	~1 µm
電力変換	太陽光ーDCーマイクロ波・・・DC	太陽光 ―レーザー・・・DC
電力変換効率	高	低
システムの大きさ	大	小
ビームのエネルギー密度	小(安全側)	大
既存インフラとの電磁適合性	低	高
送電の天候依存性	小	大
技術の成熟性	*	//
適用予測	近未来Space-Ground送電実験	Space-Space送電

キクスイホームページ キクスイ・ナレッジ・プラザ http://www.kikusui.co.jp/knowledgeplaza/microwave/microwave01_j.html

NASAの送電実験 送電距離1マイル 送電電力30kW 電力効率54% 1975年

レクテナ(受電アンテナ)の大きさ

静止衛星軌道(NASA Reference System)
送電アンテナ 1km(直径)
送電距離 36,000km
受電アンテナ 10km(直径)

低高度軌道(SPS2000) 送電アンテナ 送電距離 受電アンテナ

100m (直径) 1,100km 1km (直径)

NASAのリファレンスシステムのレクテナ

マイクロ波送電素子の比較

2GW, 500m直径アンテナの場合のケーススタディ

パラメーター	クライストロン (Dietz et al., 1981)	マグネトロン (Brown, 1980)	半導体
最大出力	26,000 W(CW)	5,000 W(CW)	59 W(CW)
作動電圧	28,000 V	6,000 V	80 V
<i>効率(DC-RF)</i>	83 %	85.5 %	90 %
素子重量	素子重量 14.15 kg		0.001 kg
運用温度	300℃(電子管本体温度) 500℃(コレクター温度)	350 <i>℃(ラジエータ温</i> <i>度)</i>	300℃(ジャンクション 温度)
500mアンテナでの個数	209,853	400,000	84,001,536
面積当たりの重量	40.4 kg/m ²	32 kg/m ²	33.9 kg/m ²

J.O.McSpadden and J.C.Mankins, 2002

マイクロ波送電ビーム方向制御

SPS技術の中で最も困難な技術

レトロディレクティブ制御:地上局の誘導電波を用い正確に数百〜数万km離れた地 上アンテナに向けて送電(静止衛星の場合であれば1km離れて3cm内に指向する 精度)

R.H.Dietz, et al., Satellite Power System: Concept Development and Evaluation Program, Vol.III–Power Transmission and Reception Technical Summary and Assessment, NASA Reference Publication 1076, 1981

Figure III-6.- Power density at rectenna as a function of distance from boresight.

Figure III-7.- Peak power density levels as a function of range from rectenna.

受信アンテナ(レクテナ)

$$\eta = \frac{\mathsf{P} \, \mathsf{aut}}{\mathsf{P} \, \mathsf{fd} \times \mathsf{ARP}} \times 100 \, [\%]$$

P aut: レクテナアレーからの直流出力電力
ARP: レクテナアレーの面積(物理開口面積)
P fd: マイクロ波の入射電力密度

Rectenna type	Paper	Frequency (GHz)	Peak Conversion Efficiency (%)	Peak output power⁄ Element (Wdc)	Polariza- tion	Mass to DC Output Power Ratio(W/kg)	Specific Mass (kg/m²)
Printed dipole	W.C.Brown, 1984	2.45	85	5	Linear	4,000	0.25
Circular patch	M.Onda et al., 1999	2.45	81	5	Dual	263	2.5
Printed dipole	J.J.Schlesaket al., 1988	2.45	70	1	Dual	_	_
Printed dual rhombic	B.Strassner and K.Chang, 2002	5.61	78	0.084	Circular	_	_
Circular patch	Y.Fujino et al., 2002	5.8	76	3	Linear	-	-
Printed dipoles	Y.−H.Suh and K.Chang,, 2002	2.45/5.8	84.4/82.7	0.094/0.052	Linear	_	_
Square patch	P.Koertand J.T.Cha, 1993	8.51	66	0.065	Dual	_	_

マイクロ波の生体への影響(規格)

5.8GHzの例

	一般公	衆への曝露	職業者	への曝露
国・機関名	電界強度	電力密度	電界強度	電力密度
	(V/m)	(mW/cm²)	(V/m)	(mW <i>/</i> cm ²)
郵政省電気通信技術審議会	61.4	1	137	5
[日本] 1990、1997		(一般環境)		(管理環境)
ANSI / IEEE [米]	—	3.87	—	10
C95.1-1999		(非管理環境)		(管理環境)
ICNIRP 1998	61	1	137	5
		(公衆曝露)		(職業曝露)

(注)ANSI:米国国家規格協会、

IEEE:米国電気電子学会、

ICNIRP: 国際非電離放射線防護協会

マイクロ波と電離層プラズマとの相互作用

地上へのマイクロ波送電 電離層を通過する必要がある

マイクロ波送電の研究のためのロケット実験

Wave Amplitude

大型構造物にとっては必ずしも無重量ではない。 大型構造物に働く力(重力勾配力) $M>>m, r_0 >> Lの場合T=3Lm\omega^2(=3gL/r_0)$ 低高度軌道では1トン10kmで約50N

スペースシャトルで行われた20kmの紐付き衛星 伸展実験。重力勾配力により紐がピンと張ることが 確認できた。 T=mω²(r₀+L)-<u>Gm_Em</u> (r₀+L)² L:重心からmまでの距離 r₀:mの地心からの距離 ω:重心の軌道角速度 m_E:地球の質量

大型構造物構築のためのロボット技術

高価な有人作業は必要最小限とする。 構築ロボット、自動展開システム 自動膨張硬化型などの新しい技術が必要。

スペースシャトルによる自動膨張実験

ビームビルダー実験(宇宙研)

宇宙電力管理分野の技術課題

分野	技術課題	前提となる産業技術 ・宇宙技術	宇宙太陽発電技術としての技術開発				
			要素技術開発・ 評価・実験室実験	地上実証 実験	軌道上実証実験 (10MW程度 以下)	パイロットプ ラント(100 MWクラス)	
宇宙電力理	低損失集配電	大規模地上太陽発 電所技術の発展 超電導技術	システムとしての 高効率・低損失 集配電技術の開発	_	宇宙環境下での 成立性の実証(~ 10MW)		
	ロータリジョイント 電力技術	_	可動部での電力 伝送技術の開発 耐久性評価	-	宇宙環境下での 成立性・耐久性 の実証	宇宙環境下 での成立性 の実証(〜1 OOMW)	
	高効率電圧制御器	電力産業がリードす る高効率民生電圧 制御器	システムとしての 高効率電力制御 技術の開発	-	宇宙環境下での		
	高効率蓄電	パソコン・携帯電話 などの産業がリード する高効率・低コスト ・軽量のバッテリー の開発	システム <i>としての</i> 高効率充放電技 術の開発	-	成立性の実証(~ 10MW)		
	大容量排熟	パソコンなどの産業機 器がリードする高効率 ・低コスト熱輸送技術	システムとしての熱 輸送、排熱技術	-	<i>システムとしての熱 的成立性の実証(</i> ~10MW)	システムとして の熱的成立性 の実証(100 MWクラス)	

電力管理技術(宇宙空間における排熱の問題)

地上と異なり、熱伝導による冷却や空冷がなく、熱放射のみ。 平板の排熱は2面排熱の場合(高高度軌道の場合)2 $\varepsilon \sigma T^4 / m^2$ (放射率: ε)。 太陽光入熱は面への直角入射で最大1400 α (W/m²)(α :吸収率)。 太陽電池の効率を η 、内部回路の電力効率を γ とすれば、釣り合いの式は、 2 $\varepsilon \sigma T^4 = 1400$ ($\alpha - \eta \gamma$) σ : Stefan-Boltzmann定数

太陽電池効率(η)=20%、回路効率(γ)=80%の場合

発送電分離型パネルの排熱検討

集光倍率2倍、太陽電池効率40%、波長選択膜あり (上)日陰中心(下)日照中心(2005年度MRI報告)

レーザー方式SSPSの排熱検討例

レーザー媒質上限温度450°C、ラジエータ厚さ20mm、2枚パネルとした場合でも熱流束40MW/m²となり 実現困難(冷却材の循環が必要)(MRI2007年度報告)

	前提となる産業技術・宇 宙技術	宇宙太陽発電技術としての技術開発			
技術課題		<i>要素技術開発・評</i> 価・実験室実験	地上実 証実験	<u>軌道上実証実験</u> (10MW程度以 下)	パイロットプラント (100MWクラス)
低コスト・大量輸送技 術	革新的宇宙輸送技術の 発展 軌道間輸送技術の発展 宇宙輸送産業の展開 宇宙産業、宇宙観光の 展開	_	_	_	_

赤字:SPSのコンフィギュレーションに強く依存しない共通技術、コア技術 青字:オプション技術またはSPSのコンフィギュレーションに強く依存する技術

低コスト打ち上げ輸送手段の開発

現在の試算ではSPS構築のコストの 30%以上は輸送コスト

宇宙輸送コストの低減(現在の輸送コストの低減(現在の輸送コストの低減)がSPS構想成立の ための必要条件

現在の使い捨てロケット方式では低コス ト化は不可能(H2Aは1機100億円)

再使用型輸送システムの開発が必須

低コスト化のためには大量輸送の需要 が必要

Air Ship One (June 21, 2004) The first non-governmental rocket ship flew to the edge of space and was piloted to a safe landing on a desert airport runway here.

宇宙研の再使用ロケット実験

宇宙観光旅行

3. 我が国で検討中の太陽発電衛星の構想と実 現へのロードマップ

・我が国の代表的な商用SPSのモデル

・実用化に至るロードマップ

日本のSSPSシステム代表的設計例(1GW級)

Basic Model

太陽非追尾マイクロ波型 発送電一体型パネル2kmx1.9kmx(2-10)cm^t テザー (5-10km)による重力安定 100mx100mパネルのユニット構成 マルチバス方式 総重量2万トン 単純、低い電力効率(64%)

Advanced Model

太陽追尾マイクロ波型 ミラー(反射鏡):2.5 km x 3.5 km, 1000トンx2式、100[~]300g/m² ミラーはフリーフライヤー 発電部:直径1.25km 集光倍率:4倍 送電部:直径1.8km 総重量:10,000トン以下(目標) 複雑、高い電力取得効率

Laser Model

太陽追尾高集光レーザー型 1モジュール:10MW、50トン ミラー(反射鏡):100mx100mx2式 ラジエーター:100mx100m 二次光学系、レーザーモジュール:120m 集光倍率:数百倍 システム:100モジュール接続、12km 総重量:5,000トン(目標) 複雑、システムが小型、雲の影響

無人宇宙実験システム研究開発機構(USEF)のモデル

1GWモデル 1~2万トン テザーによる重力安定 単純な構成に特徴

発送電一体型パネルの概念

発送電一体型パネル(電気的にも構造的にも 全く等価な多数のモジュールでパネルを構成)

- ・パネル上面の太陽電池で得られた電力は下 面のアンテナからマイクロ波として放射
- ・全てのモジュールは無線LANで集中制御

⇒モジュール間には一切の電力、信号ケーブル のインターフェイスはない

- ・容易な取り付け、取り外し
- ・電力システムとしてロバスト
- ・製造、試験、品質管理が容易

全重量:26,500 MT 出力:1 GW(一定)

輸送機搭載状態

平板型テザー太陽発電衛星の特性の比較

JAXA 2004/2005年型M-SSPSモデル

1 GWモデル、

可動部を無くすため、ミラー部は太陽輻射圧を利 用し編隊飛行させる。

熱的成立性を確保するため発送電分離型(バス 電源)とする。

ミラー(反射鏡):2.5 km x 3.5 km, 1000トンx2式、

100~300g/m²

発電部:直径1.25km(太陽電池638トン、波長選択膜638トン)

集光倍率:4倍

送電部:直径1.8km、送電器2685トン、アンテナ763トン、 構造体:945トン

集電ケーブル等:1340トン

マージン:900トン

レクテナ: 直径2.74km

総重量:10.000トン以下(目標)

コスト:総コスト1.18兆円(宇宙セグメント6800億円、レクテ ナ2000億円、輸送3000億円)、メンテナンス312億円/年、 発電コスト8.6円/kWh(ターゲット:8円/kWh)

藤田ら、信学技報 Technical Report of IEICE, SPS2005-24(2006-04) 宇宙エネルギー利用システム検討委員会報告(2008年3月3日)

JAXA 2004/2005年型L-SSPSモデル

1GWモデル=10MWx100モジュール エネルギーフロー:太陽エネルギー入射 52.1MW(200mx100mx1370W/m2.38.000m2で計算)―二次 集光鏡波長選択32.6W(350nm-950nm,62.6%)ーレーザー 増幅器出力10MW(効率19.2%) 太陽光直接励起 CrドープNd:YAG結晶 限界吸収遷移効率:36.9%、目標35% 一次光学系:98%,100g/m² 二次光学系:90%、波長選択膜 地上系 変換効率:50%(現状20%) ビーム密度:10kW//m² ビーム径:400m 総合効率 0.19x0.9x0.5=0.086 (マイクロ波:0.35x0.85x0.97x0.9x0.85=0.22)

ミラー(反射鏡):100mx100mx2式 ラジエーター:100mx100m 二次光学系、レーザーモジュール:120m 集光倍率:数百倍 モジュール:10MW、50トン システム:100モジュール接続、12km 総重量:5,000トン(目標)

宇宙エネルギー利用システム検討委員会報告(2008年3月3日)

平板型テザー宇宙太陽発電所の建設方法

テザーSPSを成立させるために必要な技術レベル

太陽電池技術	発電効率35%, 2kW/kg, 0.5kW/m², 50円/W		
マイクロ波送電技術	効率85%, 10g/W, 100円/W, 静止衛星軌道か ら3.5km径のレクテナへ90%の効率で電力を 送るマイクロ波制御技術*		
蓄電技術	2kWh/kg, 10円/Wh, 充放電効率90%, DOD50%, 充放電寿命30,000回		
マイクロ波受電技術	<i>効率85%, 50円/W</i>		
輸送コスト	15,000円/kg(地上から低軌道、低軌道から 静止軌道衛星)		

静止衛星軌道に構築する社会インフラのスペースベルト

エネルギー、通信、観測インフラ、メンテナンス 設備のコンプレックス(静止衛星軌道上)

地球上の全ての一次エネルギー(13000 GW)を出力一定型のテザーSPSでまかな うとしたら全長32,500kmとなり、スペースベルト全周の14%を占めることになる。

月探査基地構想とレーザー送電の応用

水の氷が存在する可能性のあるシャックルトンクレータ

永久影への水探査ローバーへの送電

周回軌道上から月面基地への送電

4. 研究現状と近未来の実証実験の計画

•地上基礎研究

発送電一体型モジュール試作
パネル展開方法
耐デブリ衝突研究
太陽電池パネルの耐放電研究
全機能モデル製作
小型ローバーへのマイクロ波送電
・地上無線送電デモンストレーション実験
・軌道上デモンストレーションの構想

小型車両へのマイクロ波送電実験(USEF)

マイクロ波送電器

マイクロ波受電器

小型車両

マイクロ波SSPS 地上実証実験(1kW クラス)

送電距離100 m以上

レーザSSPS 地上実証実験(1kW クラス)

太陽光励起固体レーザーレーザー伝送光学系(ビーム制御、ビーム波面補償したナム均質化機構光電変換素子

200W クラスレーザー送電実験(角田/JAXA、1998年)

国際SPS会議に於ける各国の論文数の推移

SPSに関するアンケート

77%

3%

63%

52%

29%

2004年3月 三菱総研の調査(一般成人2700人、インターネット)

SPSの認知度 SPSを全く知らない・・・・・ SPSについて聞いたことがある・ やや知っている・・・・・・ 良く知っている・・・・・・	66% 26% 7% 1%	他の新エネルギー源の認知度 太陽熱利用・・・・・・・ 風力発電・・・・・・・ 太陽光発電・・・・・・・・ 太陽光発電・・・・・・・・
SPSの必要性 とても必要・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	46% 33%	SPSを進めるべきか 大いに進めるべき・・・・・・ やや進めるべき・・・・・・
今後のエネルギー源に求めるこ 安全性・・・・・・ 環境に優しいこと・・・・・ 安定供給・・・・・・・ 安価なこと・・・・・・	と 91% 89% 75% 52%	
地球環境・エネルギー問題解決への挑戦 一宇宙太陽光発電システムー

環境問題、エネルギー問題のような地球規模の問題は、地球閉鎖系 の中で解決しようとするのではなく、地球の外即ち宇宙空間に解決の 道を探るべきではなかろうか。

宇宙空間には、地上と異なり広大な場と天候に左右されないふんだん な太陽エネルギーがある。SPS構想は、人類のフロンティアである宇宙 空間を人類のエネルギー取得の場として利用しようとするものであり、 クリーンで大規模なエネルギーシステムとして大きな可能性を持ってい

現段階でSPSが将来の人類のエネルギーシステムとして最善の選択 肢であることが示されている訳ではないが、将来エネルギーとして極 めて有力な選択肢であることは間違いない。

SPSが真に人類社会の救世主になりうることを検証するため、本格的 な軌道上実証実験に着手すべき段階に来ている。