太陽発電衛星の理工学

1.太陽発電衛星の概念
2.太陽発電衛星の技術
3.関連する理工学研究のトピックス

-大規模宇宙エネルギーシステムと宇宙環境との相互作用ー
・大型構造物と宇宙環境
・高電圧と宇宙空間プラズマ
・マイクロ波と電離層

4.今後の展望

理科大講義 2003年6月

宇宙(空間・環境)の利用

情報分野(成熟)

大きな対地視野を利用した通信、放送、 気象、地球観測(特に静止衛星軌道が 有効)

物質分野(開発途上)

地上では実現できない極限環境(超高 真空、長時間高品質無重量)を利用し た新材料・医薬品創製

エネルギー分野(未着手) ふんだんな太陽エネルギーを利用した エネルギーシステム(太陽発電衛星)

太陽発電衛星

5月30日に行われたわが国の超電導材料回収実験

USERS

昨年9月10日H2Aで打ち上げ 微小重力環境材料実験を4ヶ月にわたり実施 地上では生成不可能な大型の超伝導材料を電気炉で作製 材料1ヶに付き1.5ヶ月かけて作製 電気炉部分を切り離し地上へ再投入 最後はパラシュートで日本近海に着水

宇宙空間における太陽エネルギー利用

太陽からの地球へのエネルギーは 1.77x10¹⁷Watt 現在の人類のエネルギーの消費量の15000倍 ⇒太陽エネルギーは人類のエネルギー源として 大きな可能性を持っている。

地球周辺の宇宙空間での太陽光のエネルギー 密度は1350W/m²

地上での太陽光の年間平均エネルギー密度は 100~200W/m²

理由:夜の存在、曇天・雨天の存在、大気による 減衰

⇒宇宙空間から地上への効率の良い電力輸送 が可能であれば宇宙空間を太陽エネルギー取得 の場として利用することが望ましい。

- ・基本的な概念
- ・エネルギー 問題・地球環境問題への寄与
- ・研究の歴史

宇宙での太陽光からのエネルギー取 得の効率は地上太陽光利用の場合の 5~10倍。 一方無線送受電の効率は50%が期待 できる。

従ってこのシステムは地上の太陽光利 用に比べ2.5~5倍の高い効率で電力 を取得できる。

クリーンで大規模なエネルギーシステ ムの実現

今後のエネルギー利用増大の主要因は開発途上国の需要増

宇宙太陽発電衛星のCO₂負荷

(g-CO2/kWh)

発電方式	経常運転時	建設時	合計
太陽発電衛星	0	20	20
石炭火力発電	1222	3	1225
石油火力発電	844	2	846
LNG火力発電	629	2	631
原子力発電	19	3	22

る陽充電留星研究の歴史	
1968年 ピーターグレーザーのサイエンスの論文	
"効率的で安全なマイクロ波ビームによる電力伝送、宇宙空間(こ
おける電力ブラント"の概念、特許化(1973年)	
1970年代 NASA/DOE(US Department of Energy) リファレンスシスラ	Ē
1978 DOE0/SPS Concept Development and	
Evaluation Program(CDEP)	
1980年 米国でのシステム的研究は中断、NAS(米国科学アカデミー)(の
評価	
レーガン政権の財政緊縮方針で中断	
1990年代 環境問題のたかまり、エネルギーオプションの必要性から再注	F
	-
1990年 宇宙科学研究所SPS2000研究スタート	
1995年 NASA研究再開	
1999年以降 NASDA USEF調查研究	

ピーターグレーザーの特許公告

SPSの古典的なモデル 出力5GW 重量5万トン 面積5kmx10km 厚さ0.5km 送電アンテナ直径1km

宇宙科学研究所のSPS2000モデル

日本で初めての本格的なSPSの設計研究

事項	諸元
軌道	赤道軌道高度1,100 km
構造	断面330 mの正三角形、長さ300 m
姿勢制御	重力安定
組み立て	自動展開及び組み立てロボットの組合せ
発電電力	1万6千kW
発電電圧	1,000 ∨
地上受電電力	1万 kW
送電媒体	マイクロ波 2.4 GHz
送電アンテナ	フェイズドアレイによるビーム方向制御
地上受電アンテナ	リフレクタ付きワイヤーアンテナ
総重量	240トン
打ち上げロケット	アリアンV(16回のフライト)
運用	日照時のみ送電
寿命	10年以上

NASAのサンタワー

NASAの研究再開時の スタディモデル 出力100~300MW 高さ15km 集光ミラー直径60m 送電アンテナ250m

宇宙開発事業団(NASDA)のモデル

NASDAの最近のスタディモデル 出力1GWモデル 総重量数万トン 太陽追尾反射集光型

このモデル以外にも数種類の タイプが検討されている。

マイクロ波ではなく太陽光直接励起の レーザーを使用したモデルも検討されている。

無人宇宙実験システム研究開発機構(USEF)のモデル

1GWモデル 1~2万トン テザーによる重力安定 単純な構成に特徴

SPS実現のための主要技術の目標

主要な技術	現状の到達レベル	目標レベル
宇宙太陽光発電	数十kW(国際宇宙ステーションで80kW)	GW
発生電圧(バス電圧)	1 0 0 ~ 1 5 0 V	1 k V以上
マイクロ波送電	数十kW(地上)、1kW(宇宙)	GW
排熱	数十kW	数百MW
大型構造物	100mクラス(国際宇宙ステーション)	数km
宇宙輸送のコスト	1 0 0 ~ 2 0 0 万円/k g	1万円/kg

宇宙空間における排熱の問題

地上と異なり、熱伝導による冷却や空冷がなく、熱放射のみ。 平板の排熱は2面排熱の場合(高高度軌道の場合)2 $\epsilon\sigma$ T⁴/m²(放射率: ϵ)。太陽光入熱は 面への直角入射で最大1400 α (W/m²)(α :吸収率)。 太陽電池の効率を η 、内部回路の電力効率を γ とすれば、釣り合いの式は、 $2\epsilon\sigma$ T⁴=1400($\alpha-\eta\gamma$) σ :Stefan-Boltzmann定数

太陽電池効率 $(\eta)=20\%$ 、回路効率 $(\gamma)=80\%$ の場合

·宇宙発電技術

- ・無線送電(マイクロ波送電)技術
- ·大型構造物構築技術
- ・打ち上げ輸送

太陽電池の発電原理(結晶シリコンの場合) n型半導体とp型半導体を接合すると<mark>接合部で電場が発生。</mark> 光のエネルギー(hν, hν ≧バンドギャップEg)が価電子帯の 電子を伝導帯まで励起させ,生成された電子-正孔対が内部 電界により電子はn型へ,正孔はp型に移動する。

h ν :光のエネルギー Eg:バンドギャップ

多結晶シリコン太陽電池のモジュール

太陽電池の種類とSPS用として有望なタイプ

薄膜、フレキシブル、軽量、高効率(重量当たりの電力)

型	種類	特徴	技術的課題	SSPS用としての評価
バルク型	Si (単結晶、 多結晶)	現在の生産の主流	技術的に成熟に近い	重量あたりの出力が低 い
	III-V族結晶 化合物	超高効率 宇宙用、高コスト	更なる高効率化(40%目標) 集光系との組み合わせで低コス ト化。但し、集光システムの重 量を考慮し、放熱を検討する必 要有り。	資源的制約(Ge, In)集光 系との組み合わせで可 能性有り。但し、正確 な太陽指向が必要
*薄膜型 (10µm 以下)	アモルファ スシリコン	量産性、低コスト、 製品としての先行	効率改善(10%->12%) 大面積化、安定化、高速製膜、 高い歩留まり、ロール化	当面有力
	CdTe	構造が簡単で安定 性が高い 低コストの可能性	常圧下でのCdTe 膜の形成技術、 高品質化、大面積化	資源的制約(Cd, Te)
	CIS	高効率、長寿命、 耐放射線性に優れ る	バンドギャッププロファイルの 最適化、均一性	資源的制約(ln) 将来有望
	多結晶シリ コン	ハイブリット型で の組み合わせ	歩留まりの良い多結晶膜	

高い宇宙放射線耐性 ⇒耐性の高いタイプのセル選定

デブリとの衝突破壊を考慮した設計 ⇒故障が伝搬しないモジュール化設計

宇宙放射線の種類:太陽高エネルギー粒子、銀河宇宙線、放射線帯粒子。 劣化の原因:半導体内での<mark>放射線欠陥</mark>の発生による効率の低下。 構成としては薄膜、材料としてはCISが劣化が少ない。

劣化パラメーター:
 放射線のエネルギー
 発電層の厚み
 発電部の材質

·宇宙発電技術

- ・無線送電(マイクロ波送電)技術
- ·大型構造物構築技術
- ・打ち上げ輸送

マイクロ波による無線電力送電

- (a) 電離層シンチレーション
- (b) 降雨減衰(25mm/h、降雨中を2kmだけ通る例)
- (c) 晴天時の大気による吸収
- (d) 対流圏シンチレーション(気 候によって異なる)

NASAの送電実験 送電距離1マイル 送電電力30kW 電力効率54% 1975年

受電アンテナ

静止衛星軌道(NASA Reference System)

送電アンテナ 送電距離 受電アンテナ

1km(直径) 36,000km 10km (直径)

低高度軌道(SPS2000) 送電アンテナ 100m (直径) 送電距離 1,100km 受電アンテナ 1km (直径)

NASAのリファレンスシステムのレクテナ

マイクロ波送電ビーム方向制御

SPS技術の中で最も困難な技術

 レトロディレクティブ制御:地上局の誘導電波を用い正確に数百~数万km離れた地

 上アンテナに向けて送電(静止衛星の場合であれば1km離れて3cm内に指向する

 精度)

 送電アンテナ

$$\eta = \frac{P_{\text{out}}}{P_{\text{fd}} \times A_{\text{RP}}} \times 100 \ [\%]$$

P aut: レクテナアレーからの直流出力電力
 ARP: レクテナアレーの面積(物理開口面積)
 P fd: マイクロ波の入射電力密度

マイクロ波の生体への影響

5.8GHzの例

	一般公衆への曝露		職業者への曝露	
国・機関名	電界強度	電力密度	電界強度	電力密度
	(V/m)	(mW/cm²)	(V/m)	(mW <i>/</i> cm ²)
郵政省電気通信技術審議会	61.4	1	137	5
[日本] 1990、1997		(一般環境)		(管理環境)
ANSI/IEEE [米]	_	3.87	—	10
C95.1-1999		(非管理環境)		(管理環境)
ICNIRP 1998	61	1	137	5
		(公衆曝露)		(職業曝露)

·宇宙発電技術

- ・無線送電(マイクロ波送電)技術
- ·大型構造物構築技術
- ・打ち上げ輸送

大型構造物にとっては必ずしも無重量ではない。 大型構造物に働く力(重力勾配力) M>>m,r₀>>Lの場合T=3Lmω² 低高度軌道では1トン10kmで約50N

スペースシャトルで行われた20kmの紐付き衛星伸展実験。 重力勾配力により紐がピンと張ることが確認できた。

大型構造物構築のためのロボット技術

高価な有人作業は必要最小限とする。 構築ロボット、自動展開システム 自動膨張硬化型などの新しい技術が必要。

スペースシャトルによる自動膨張実験

ビームビルダー実験(宇宙研)

·宇宙発電技術

- ・無線送電(マイクロ波送電)技術
- ·大型構造物構築技術
- ・打ち上げ輸送

低コスト打ち上げ輸送手段の開発

現在の試算ではSPS構築のコストの5 0%以上は輸送コスト

宇宙輸送コストの低減(現在の輸送コストの低減(現在の輸送コストの1/100程度)がSPS構想成立 のための必要条件

現在の使い捨てロケット方式では低コス ト化は不可能(H2Aは1機80億円)

再使用型輸送システムの開発が必須

低コスト化のためには大量輸送の需要が 必要

宇宙研の再使用ロケット実験

太陽発電衛星

SPSに関連する理工学研究のトピックス

大規模エネルギーシステムと宇宙環境との相互作用

(1)大型構造物と宇宙環境

(2) 高電圧と宇宙空間プラズマ

(3) マイクロ波と電離層

電磁気学 Maxwellの基礎方程式 二極管の電圧電流特性 気体力学、統計力学 Maxwell分布 気体分子運動論 プラズマ物理学

波動粒子相互作用

SPSに関連する理工学研究のトピックス

大規模エネルギーシステムと宇宙環境との相互作用

(1)大型構造物と宇宙環境

(2) 高電圧と宇宙空間プラズマ

(3) マイクロ波と電離層

宇宙構造物周辺に形成される宇宙環境

宇宙機周辺には、宇宙機と宇宙環境との相 互作用により、自然の宇宙環境と異なる宇宙 機特有の宇宙環境(SIE:Spacecraft-Induced Environment)が形成される。

宇宙機のサイズが大きいほど、自然の宇宙環 境と大きく異なる、大きなスケールのSIEが 形成される。

大規模な宇宙機であるSPS周辺にはSPS特 有の宇宙環境が形成され、半永久的に運用 するSPS の設計にあたっては、予めその環境 を解明しておく必要がある。

大型構造物周辺の宇宙環境

宇宙構造物周辺のガス密度(理論上)

進行方向前方側 n=no+no・Vs / Vr no:背景ガス密度 Vs:飛翔体速度 Vr:衝突散乱したガス分子の速度 specular reflectionモデルはではVr=Vs 多重散乱モデルではVr=(壁温度できまる熱速度)

進行方向後方側 円盤状の飛翔体後方の密度減少量は、ガス分布が Maxwellianの場合 $\delta n(x,y,z)=n_0/z \cdot (M/2\pi kT)^{2/3}) dx_0 dy_0$ $v^2 \cdot exp(-M/2kT \cdot ((v^2(x-x_0)^2+((y-y_0)v-V_0z \sin \psi)^2)/z^2 +(v-V_0 \cos \psi)^2)) dv$

実際には、衛星本体からのアウトガス(脱ガス)、気密室リーク、姿勢制御・軌道維持のためのスラ スタ運用(電気推進運用)により衛星周辺のガス密度は<mark>自然のガス密度よりはるかに高いガス密</mark> 度となっている。

View from Columbia of the Wake Shield Facility Friday (NASA)

スペースシャトルによる高真空を実現するため のウエイクシールド実験

- 現象:ガスの雲が磁化プラズマ中を運動する時、 その速度Vがある閾値Vcを越えると放電 (急激な電離)が発生
- 歴史:アルフベンが初期太陽系の元素偏在のメ カニズムとして提唱(直感的な考察) 運動エネルギー(1/2MVc²)=電離エネル ギー(eo)
- SPSとの関連:SPS周辺に大量のプラズマが発生すると発電部への影響、無線送電への影響がある。ガス放出をコントロールしてこの現象を抑圧する事が必要。

臨界速度放電現象を検出したSEPAC実験

SEPAC:1983年 我が国最初のスペースシャトルを 用いた大型の日米共同宇宙科学実験 粒子ビームを宇宙空間に放射して 人工オーロラ発生を目指した "東京の空にオーロラを"(大林辰蔵)

Experiment	Year	Increase Ionization
SEPAC	1983	yes
XANI	1989	yes
STS 39	1991	no
ATLAS 1	1992	yes
APEX	1993	yes
North Star	2000	yes
ARGOS	2000 and 200	no

宇宙空間での臨界速度放電現象の観測

SEPAC実験での臨界速度放電現象

Orbital Velocity Perpendicular to Magnetic Field (km/sec)

臨界速度放電現象の数学的な扱い

数学的な扱い Maxwellの方程式で物理量の変化をe^{i(kr-wt)}とおいて波動方程式を得る。 波動方程式が有意な解を持つ条件としてωとkの分散関係式を得る。 冷たいプラズマ中にイオンのビームが存在する場合は、分散式は

となる。

波の振幅を $e^{i\omega t}(\omega = \omega + i\gamma)$ とおくと、 $\gamma > 0$ で波が成長する。 ω /k=vb, γ= ωLHで静電波が成長(ロワーハイブリッド不安定性)。 励起された静電波は電子にエネルギーを与え磁場方向に電子を加速。 加速された電子の速度エネルギーが中性ガスを電離するよりも大きければ新たな電離が 発生。 発生したイオンは更に上記のプロセスを促進し大量の電離(放電)を導く。

SPSに関連する理工学研究のトピックス

大規模エネルギーシステムと宇宙環境との相互作用

(1)大型構造物と宇宙環境

(2) 高電圧と宇宙空間プラズマ

(3) マイクロ波と電離層

高電圧と周辺プラズマの相互作用

SPSでは大量の電力を集配電する。ケーブルでの熱損失を少なくするためには高 電圧を使用する必要がある。

地上の高圧送電

宇宙で高電圧を使用した時の物理現象 高電圧の露出部に対するイオン衝撃 宇宙機本体の電位変化 高電圧部での質量欠損と放電 電磁擾乱の発生

太陽電池を持つ衛星の電位

プラズマの電流密度

Maxwell分布

$$f(Vx,Vy,Vz) = \left(\frac{m}{2\pi kT}\right)^{\frac{3}{2}} e^{-\frac{m}{2kT}} (V^{2}x + V^{2}y + V^{2}z)$$

$$i = \int_{0}^{\infty} dVx \int_{-\infty}^{\infty} dVy \int_{\infty}^{\infty} dVz \cdot n Vx f(Vx,Vy,Vz)$$

$$= \frac{n}{4} \sqrt{\frac{8kT}{\pi m}}$$

e:電荷、n:密度、k:ボルツマン定数、m:質量、Vth:熱速度

電離層(n~10¹¹/m³)では、 イオン電流密度=5 µA/m² 電子電流密度=800 µA /m² 露出面積がほぼ同じで有れば | V+I≪ | V- |

即ち V- ~-Φ(太陽電池起電力) V+~0(宇宙空間プラズマとほぼ同じ電位)

太陽電池を持つ衛星の電位計測結果

電力損失と質量欠損の評価法

負電位の高電圧衛星への電流 Vi=3.25x10⁴(α^{2} li)^{2/3}(空間電荷制限電流の式) $\alpha = \gamma - 0.3 \gamma^2 + 0.075 \gamma^3 - 0.0143182 \gamma^4$ +0.0021609 γ ⁵.... $\gamma = \ln(a/b)$ Vi(V): 電圧 li(A):酸素イオンに対する空間電荷制限電流 a(m): 衛星半径 b(m): シース半径 $li=\pi b^2 Ji$ Ji=eniVs e: 電荷 ni: イオン密度 Vs: 衛星の速度

(dV/dx)_{x=0}=0 で電流の制限される

電力損失と質量欠損の評価

スパッタリングレイト研究のためのイオンビーム照射実験

酸素イオンによるスパッタリングレイトを求めるための実験装置(宇宙研)

アーク放電 ガス密度が低い場合 不安定、線状 EXB放電 磁場の影響が強い場合 安定、広範囲

SPSに関連する理工学研究のトピックス

大規模エネルギーシステムと宇宙環境との相互作用

(1)大型構造物と宇宙環境

(2) 高電圧と宇宙空間プラズマ

(3) マイクロ波と電離層

マイクロ波と電離層プラズマとの相互作用

地上へのマイクロ波送電 電離層を通過する必要がある

マイクロ波と電離層プラズマの非線形相互作用

x:擾乱を受ける前の物理量 △x:擾乱を受けた時の物理量の変化

非線形現象(△x/x二次の項考慮)

電離層では数百W~1kW/m²以上の強度の マイクロ波で非線形領域になるという計算

マイクロ波送電の研究のためのロケット実験

Wave Amplitude

当面手がけるべきデモンストレーション実験の構想

おわりに

- ・宇宙空間の利用は、科学研究、放送・通信・地球観測などの情報取得・情報 伝達の場としての利用が先行してきた。人類社会のためのより本格的な宇宙 利用(新たな飛躍)として、宇宙空間をエネルギー取得の場として利用する ための研究に着手すべき時期にきている。
- ・太陽発電衛星は、地球環境問題・資源問題を克服しうる21世紀の人類のク リーンなエネルギーシステムとして、大きな可能性をもっている。
- この可能性を明確なものとして社会に提示するためには、関連する理学・工学にわたる基礎的研究、技術研究、環境評価、経済性評価を行うとともに、 試験発電衛星によりエネルギーシステムとしての実証的な検証を行う必要がある。
- ・地球規模の環境、資源問題の解決に関わる太陽発電衛星の研究は平等互恵の 国際協力で行うべきである。資源小国でありながら大量資源消費国である日本は、新エネルギー研究に積極的な役割を果たす必要がある。