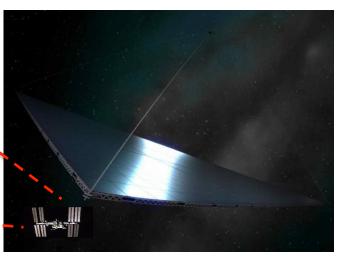
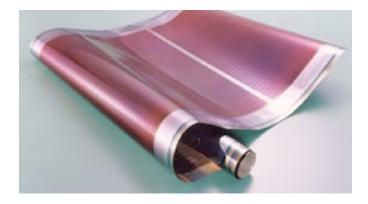

Technology Development Status for Space Solar Power Systems

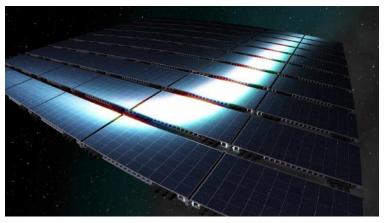
Current technology level and target technology level for SSPS
SSPS development roadmap
Development scenario to fill the technology gap between the current level and target level



Current and target level for SSPS primary technologies

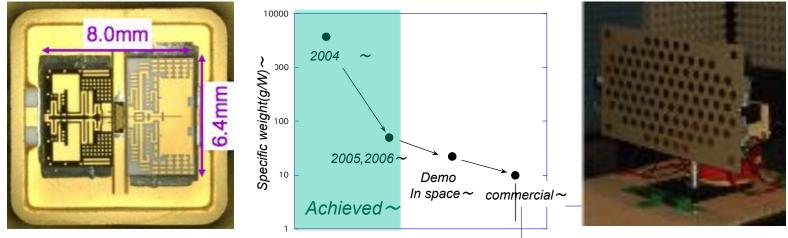
Primary technology	Existing level	Target level	Order of magnitude
Solar power generation	100 kW (space)	1 GW	10,000
Microwave power transmission	10 kW (ground)	1 GW	100,000
Large space structure	100 m (space)	1 km	10
Space transportation	5,000-10,000 \$/kg	100 \$/kg	1/50-1/100


ISS 100m Scale \sim


SSPS 1-2 km Scale \sim

Current technology level and target level for SSPS - *Power Generation* -

	Current	SSPS Target
Conversion Efficiency	15-30 %	35-40 %
Specific Weight	10-100 g/W	1 g/W
Life in Space	10 years	30-40 years
Cost	4-6 \$/W	1-0.5 \$/W


Light-weight thin film solar cell \sim

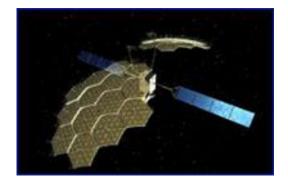
Installed on light-weight structure ~

Current technology level and target level for SSPS - *Power Transmission* -

	Current	SSPS Target
Conversion Efficiency (DC to RF)	50-70 %	85 %
Conversion Efficiency (RF to DC)	60-80 %	85 %
Specific Weight	50-100 g/W	1-10 g/W
Life in Space	10 years	40 years
Cost	20 \$/W	1 \$/W

HPA for ground experiment PAE more than 70% \sim

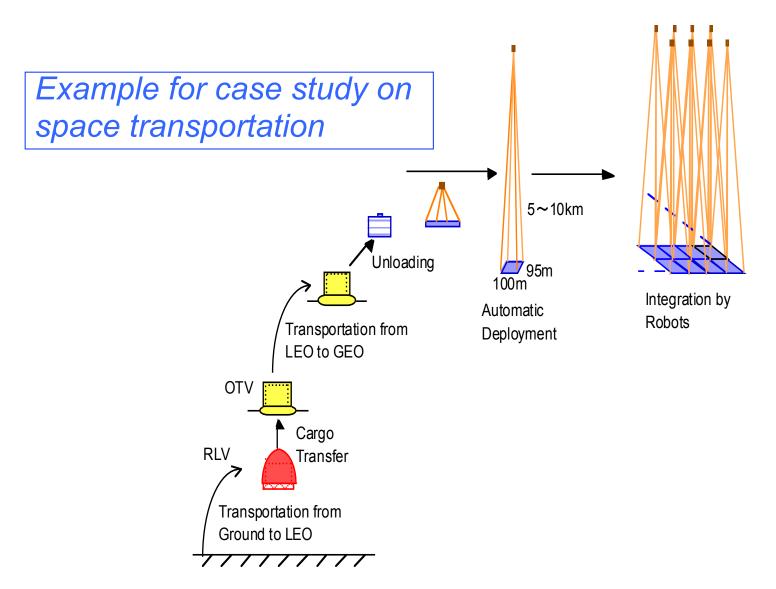
Reduction of specific weight (g/W) in Japan \sim


Rectenna for rover experiment Array efficiency more than $60\% \frac{2}{4}$

Current technology level and target level for SSPS - Large Space Structure -

	Current	SSPS Target	
Two-Dimensional (manned)	100 m	- 1,000-2,000 m	
Two-Dimensional (unmanned)	20-30 m		
One-Dimensional	20,000-30,000 m	5,000-10,000 m	
Weight	400 tons	10,000-20,000 tons	

ISS 110 m x 70 m (manned) ~



ETS-VIII Antenna 19 m x 17 m (unmanned) (2006) ~

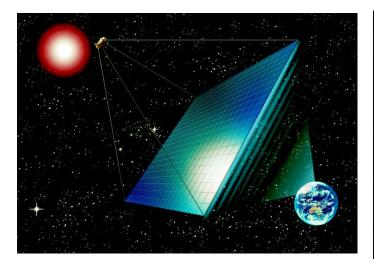
ESA YES2 Tether 31.7 km (2007) ~

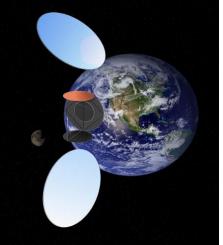
Current technology level and target level for SSPS - Space Transportation-

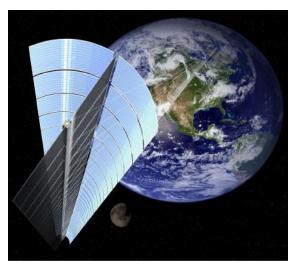
Current technology level and target level for SSPS - Space Transportation-

	Current	SSPS Target
Cargo Weight	30 ton	50 ton
Cargo into Space	Several hundreds tons/year	10,000 tons/year
Launch Vehicle	Expendable	Reusable
Transportation Cost (Ground to LEO)	5-10 k\$/kg	100 \$/kg
Orbit Transfer Vehicle	100 mN Level	100 N Level
Transportation Cost (LEO to GSO)	No reliable data	10-50 \$/kg

Falcon Heavy Commercial, low cost, heavy weight lifting, to be launched soon ~

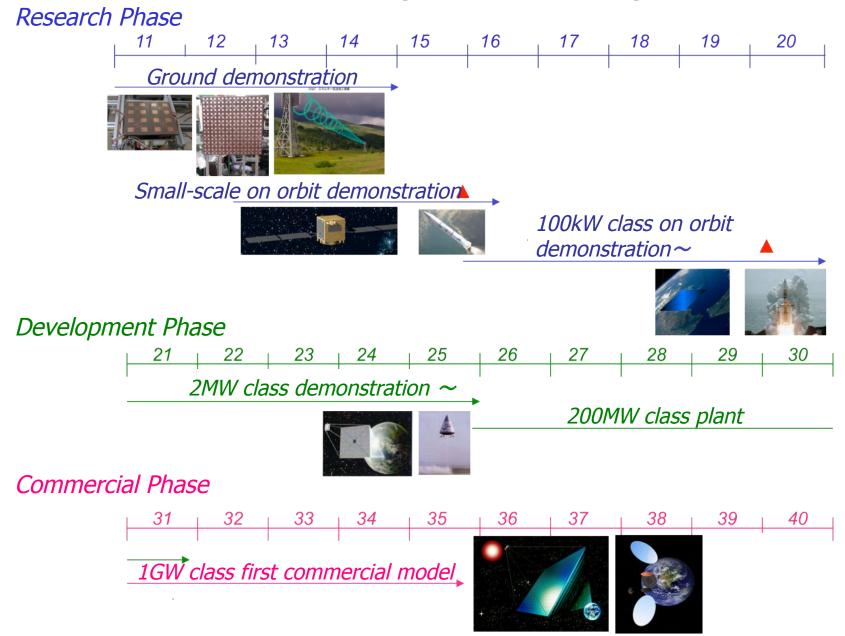



JAXA/ISAS RTV Reusable vehicle testing underway~



SpaceShip 2Reusable suborbital planeprepared for operation soon \sim_7

Commercial SSPS Concepts Currently Studied in Japan



Basic Microwavetype Model (Jspacesystems/ METI) Advanced Microwave-type Model (JAXA/MEXT)

Laser Model (JAXA/MEXT)

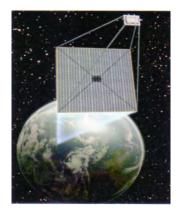
Jspacesystems(former USEF)/METI:Japan Space Systems/ Ministry of Economy, Trade and Industry JAXA/MEXT:Japan Aerospace Exploration Agency/ Ministry of Education, Culture, Sports, Science and Technology

SSPS Development Roadmap~

Commercial SPS (1SPS/year)

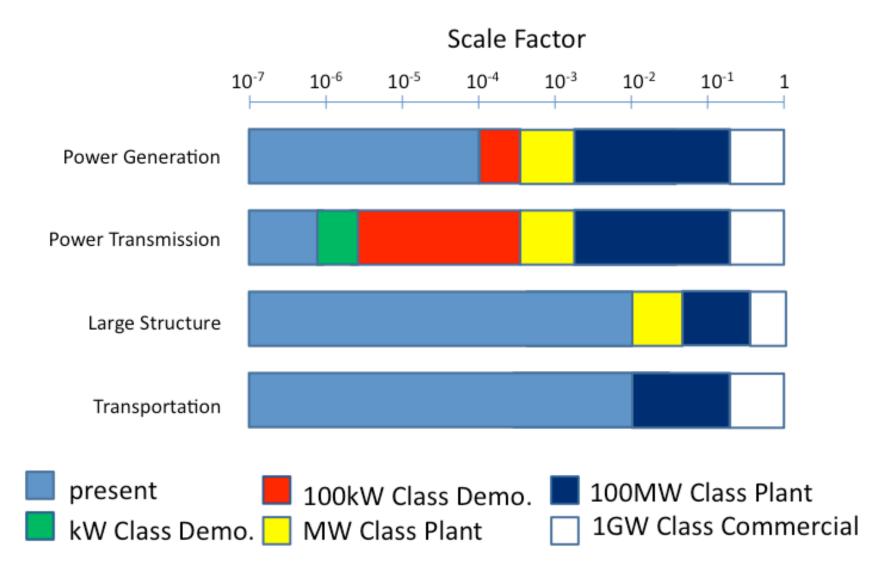
Major Milestones towards Commercial SSPS


In a few years ~


On the ground Transmission Power: 1.6kW Range: 50m max Pointing Precision: 0.5° Orbit: Low Earth Orbit (370 km) Satellite Weight: 500 kg Transmission Power: 3.8 kW(example)

5 years ~

10 years \sim



Orbit: Low Earth Orbit (370 km) Satellite Weight: 10-15 tons Transmission Power: 100-400 kW(example) 15-20 years ~

Orbit:1000 km, GSO Satellite Weight: 50-4000 tons Transmission Power: 2MW-200MW(example)

Technology Gap at Each Milestone in Roadmap~

Summary and Conclusion~

 Construction of the SSPS requires 4 major system level technologies; power generation, wireless pour transmission, large space structure, and space transportation.

 It is concluded that a large progress is required for the power transmission in the first 10 years from now, a new progress is required for the large space structure targeting in the next 10 years and an innovative advancement for the space transportation is required targeting in the last 5 years. ~