Updated Technology Road Map for Solar Energy from Space

Milestones for SSPS Development
SSPS Technology Road Map

 Research Phase
 Development Phase
 Development Steps

SSPS Requirements for Space Transportation

SSPS Development Milestones as Compared with Nuclear Fission and Fusion

Commercial SSPS Concepts Currently Studied in Japan

Basic Microwave-type Model (USEF/METI) Advanced Microwave-type Model (JAXA/MEXT)

Laser Model (JAXA/MEXT)

USEF/METI:Unmanned Space Experiment Free Flyer/ Ministry of Economy, Trade and Industry JAXA/MEXT:Japan Aerospace Exploration Agency/ Ministry of Education, Culture, Sports, Science and Technology

orowave Power Transmission Experiment

General Concept
Transmission of a kilowatt-level microwave to a rectenna located typically at 50 m apart from the phased array transmitting antenna
Beam direction control by a pilot signal from the rectenna site

Objectives

to establish technologies to control a microwave power beam directing at a target rectenna, to establish technical readiness for the space experiment in the near future.

Microwave Power Transmission Demonstration

Rectenna output power will be used to operate household electric appliances for public demonstration.

Laser Power Transmission Experiment on Ground

Laser Power Transmission experiment(200W class) at Kakuta/JAXA

Laser power generation experiment(100W class)

Experiment on Small Satellite

Orbit: Low Earth Orbit (370 km) Satellite Weight: 500 kg Mission Weight: 200 kg Attitude Control: 3-axis Stabilization Transmission Power: 3.8 kW

Epsilon Launch Vehicle for small satellite. Next-generation solid propellant rocket after the former M-V launch vehicle.

Microwave power transmission from small satellite.

Microwave transmission experimen

Experiment Configuration

Ground

Laser Power Transmission Experiment from JEM (an example)

International Space Station JEM

Transmitter 1 kW, 1.06 μm 20 cmΦ Optics

Photovoltaic Cell Array

Configuration of Experiment System

Development Steps towards Commercial SSPS

Steps	Ground Demonstration	Small-scale Flight Demonstration	Large-scale Flight Demonstration	Small Plant	Large Plant
Transmission	Ground	LEO to Ground	LEO to Ground	1000 km to Ground	GSO to Ground
Range	50-500 m	400 km	400 km	1000 km	36000 km
Power Level	kW level	kW level	100 kW level	2 MW level	200 MW level
Structure Scale	several m	several m	20 m	100 m	500 m
lonosphere/ Atmosphere Transmission	_	1kW/m²	1kW/m²	1kW/m²	1kW/m²
Power at Receiver	several hundreds Watt	Ι	10kW	1.8MW	160MW
System(in case of Basic Model)					

SSPS Requirements for Space Transportation

Phase	Small scale demonstration	Large scale demonstration	Small plant	Large plant	First commercial model	Commercial
Target year	~2015	~2020	~2025	~2030	~2035	2035~
Orbit	LEO	LEO	1000 km	GEO	GEO	GEO
Power level	1~5kW	100 kW	2 MW	200 MW	1 GW	1 GW
System weight	500 kg	15 tons	50 tons	5000 tons	20000 tons	20000 tons
Construction	NA	NA	1 year	3 years	5 years	1 year
Payload weight	500 kg	15 tons	10 tons	50 tons	50 tons	50 tons
Launch vehicle	1 ELV LEO	1 ELV LEO	1 RLV 1000km 5 Round trips 1 launch/2.4 months	4 RLV 500 km 160 round trips 1 launch/week 4 weeks turn around	8 RLV 500 km 640 round trips 1 launch/3 days 3 weeks turn around	28 RLV 500 km 640 round trips 2 launch per day 2 weeks turn around
Orbit transfer vehicle	NA	NA	NA	17 OTV 500 km-GEO 6 round trips*	40 OTV 500 km-GEO 10 round trips*	200 OTV 500 km-GEO 2 round trips*

Epsilon Launch Vehicle H-II Launch Vehicle

Reusable Sounding Rocket

OTV(Image)

*: fuel 30 tons for a round trip

Summary and Conclusion

An updated technology road map towards commercial SSPS that accommodates the requirements from the Japanese space policy has been introduced.

 The projects for the wireless power transmission experiments on the ground have been already started, and then we will have small scale flight demonstration experiment around 2015.

 After completion of the small scale demonstration, we will make a 100 kW-class experiment and then the plant level demonstration up to 200 MW before 2030.

 This approach will contribute in timely manner to resolving the global problem, combined with CO₂ issue and shortage of natural energy resources.