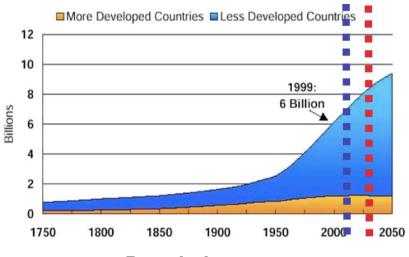
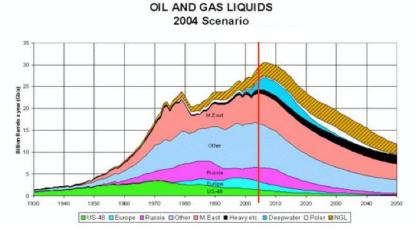
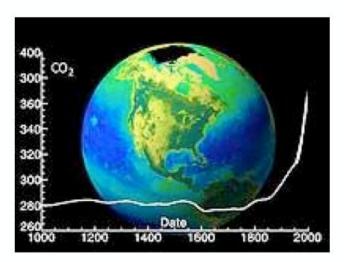

Wireless Power Transmission Technologies for Solar Power Satellite


- Concept of Solar Power Satellite (SPS)
- Microwave Power Transmission for SPS
- Demonstration Experiment of Microwave Power Transmission
- Roadmap towards Commercial SPS


Concept of Solar Power Satellite (SPS)

Why new energy system required? Why SPS promising? SPS configuration SPS research history Typical SPS models Japanese SPS concepts


Why New Energy System Required?

Population

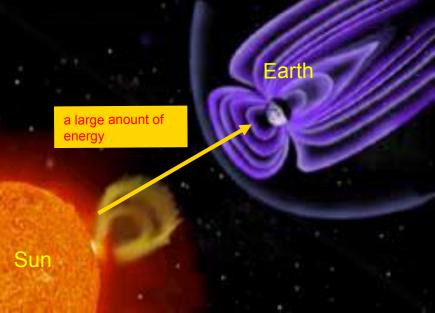
Fossil Fuel

*Ref:*Abundant & Affordable Space-Based Solar Power Realizing the Opportunity*John C.Mankins(2007)*

New Energy System Required Clean Safe Large-scale Permanent

CO₂ Emission

Space Solar Power - A Potential Solution

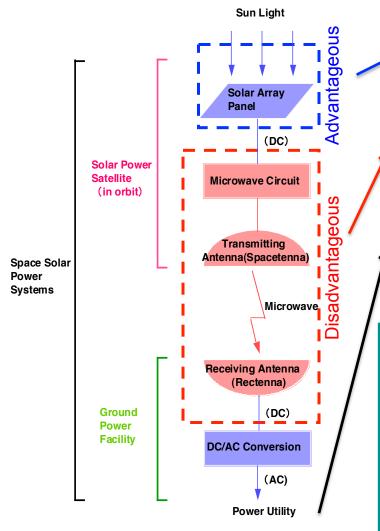

Why Solar Power? Power from Sun to Earth: 1.77x10¹⁷Watt 10,000 times more than total power consumption ⇒large potential for power source for human activities

Why Space?

Power density in space: 1,350W/m² Power density on ground: 100~200W/ m²

due to night, whether dependence, atmospheric loss

⇒"Space" is preferable to obtain solar power, if we have an efficient method to transfer the energy from space to ground (wireless power transmission).



Solar Power Satellite (SPS)

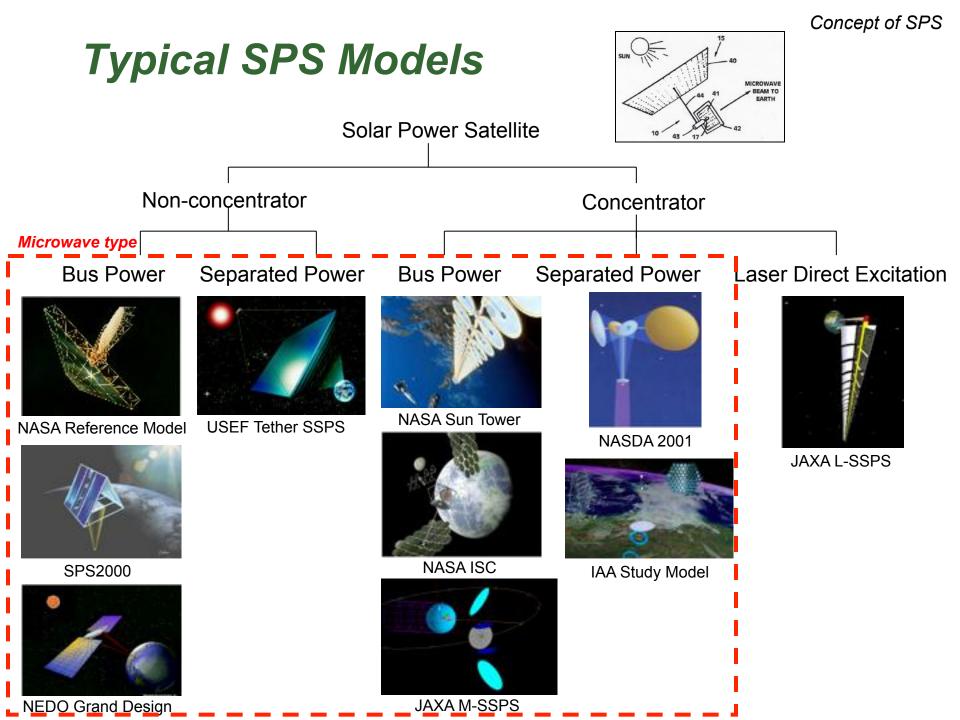
Concept of SPS

What's SPS Advantage?

Solar power density 10 times larger than ground on average

Wireless power transmission efficiency more than 0.5

Totally, 5 times better than ground solar power plant.

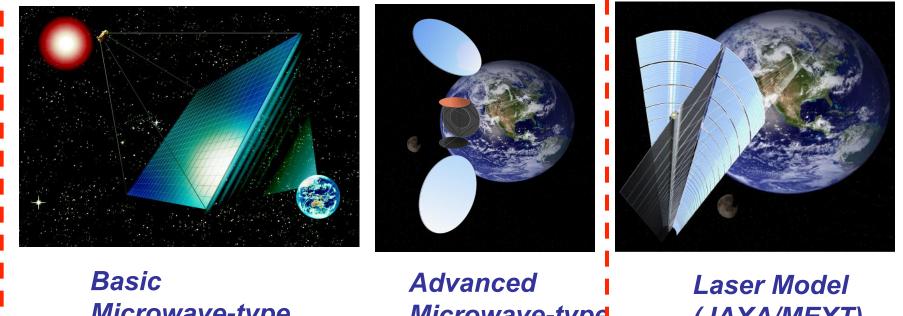

Possibility of a large-scale clean energy system • Stable, independent on local time and whether conditions

- Practically unlimited amount of energy
- •Energy payback time could be less than one year
- ■Power cost could be 10–30 ¢/kWh
- CO₂ emission could be less than one-several tenth of fossil power plant

SPS Major History

1968	First Concept by Peter Glaser "Power from the Sun: its Future" in Science					
1970'	NASA/DOE (Department of Energy) Study					
	1977-1980 NASA Conceptual Design (20 M\$)					
	1978 DOE's SPS Concept Development and					
	Evaluation Program(CDEP)					
1980	Study in US terminated by President Reagan					
1983	First Sounding Rocket Experiment in Japan to Study					
	Microwave/Plasma Interaction					
1990	ISAS Study "Demonstration Model SPS 2000" in Japan					
1995	NASA Fresh-look Study (-2004)					
1998 –	NASDA(now JAXA/MEXT*) SSPS Study, USEF/METI **					
	SSPS Study in Japan					
2002-2004	ESA SPS Study					
2009	SPS research included in Government Basic Plan for					
	Space Policy in Japan					

*JAXA/MEXT:Japan Aerospace Exploration Agency/ Ministry of Education, Culture, Sports, Science and Technology **USEF/METI:Unmanned Space Experiment Free Flyer/ Ministry of Economy, Trade and Industry.

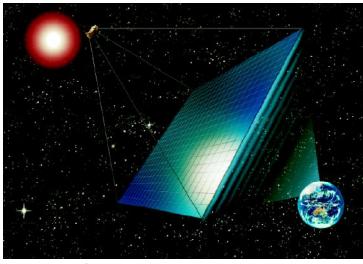


Comparison of Microwave and Laser Power Transmission

	Microwave	Laser	
Frequency/Wave Length	several GHz	~1 µm	
Power Conversion	Solar–DC–RF•••DC	Solar–Laser • • •DC	
Conversion Efficiency	Higher	Lower	
System Size	Larger	Smaller	
Beam Energy Density	Lower(Safer)	Higher	
Electromagnetic Compatibility	Lower	Higher	
Weather Dependence	Smaller (typically 97% transmission)	Larger (typically 35–40 % transmission)	
Technology Maturity	Higher	Lower	
Comment	Near term demonstration	Space-Space	

Examples of Commercial SPS Models Currently Studied in Japan

Microwave type

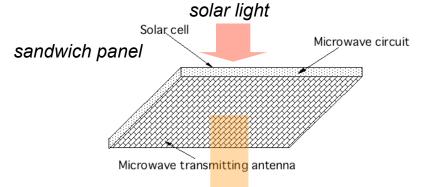

Microwave-type Model (USEF/METI)

Microwave-type Model (JAXA/MEXT)

(JAXA/MEXT)

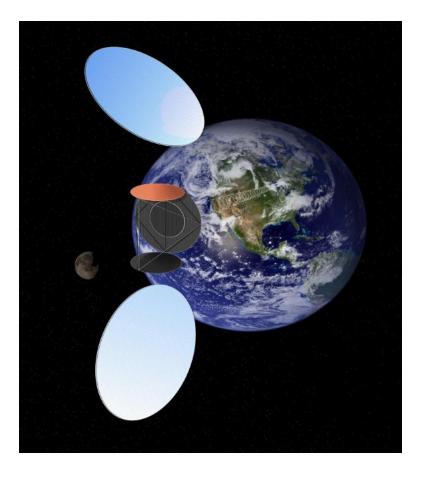
USEF/METI: Unmanned Space Experiment Free Flyer/ Ministry of Economy, Trade and Industry JAXA/MEXT: Japan Aerospace Exploration Agency/ Ministry of Education, Culture, Sports, Science and Technology

Basic Type (Earth-pointing)



Single-Bus Model

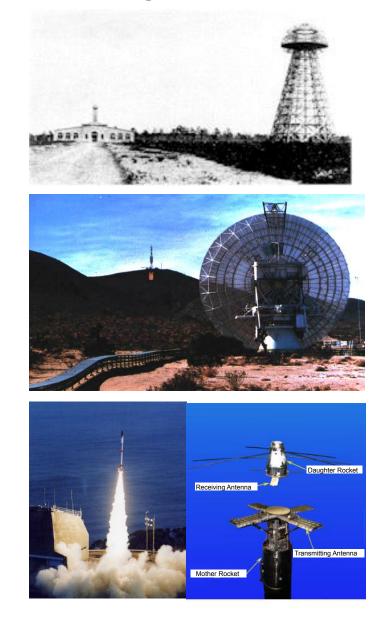
Multi-Bus Model


Earth pointing 1 GW-SPS (1GW=10⁹W, equivalent one nuclear plant) Power generation/transmission panel(sandwich panel) 2km x 1.9km x(2-10)cm^t

Suspended by tether wires of 5-10 km, stabilized by gravity gradient force Unit panel 100m x 100m size Total weight 20,000 tons

Simple but low rate power collection (64%)

Advanced Type (Sun-pointing)


Sun pointing 1GW-SPS Reflection mirrors (free flying) :2.5 km x 3.5 km

1000 tons x 2sets. Powergeneration: 1.25 km Φ x2 sets Power transmission: 1. 8 km Φ Total weight: 10,000 tons(target) **Complicated but high** rate power collection

Microwave Power Transmission for SPS

Major historical milestones Issues for SPS application Technologies Frequency allocation Transmission through ionosphere Public acceptance

Historical Epochs of Microwave Power Transmission for SPS

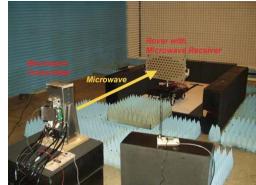
Tesla tower intended for wireless power transmission experiment (1905)

Microwave power transmission demonstration experiment at NASA JPL Goldstone, transmitted 34kW, 1 mile, the world record (1975)

Microwave transmission experiment near kW in space by Kyoto Univ., Kobe Univ., and ISAS(1983,1993)

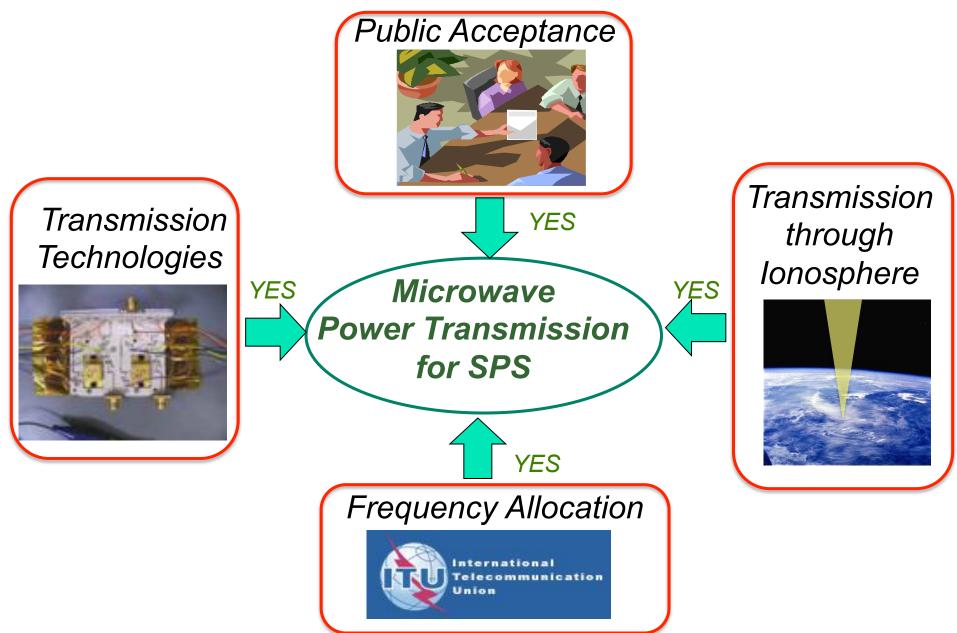
Recent Microwave Transmission Experiments

Small Airplane Experiment (1992, Kobe Univ., Kyoto Univ.)

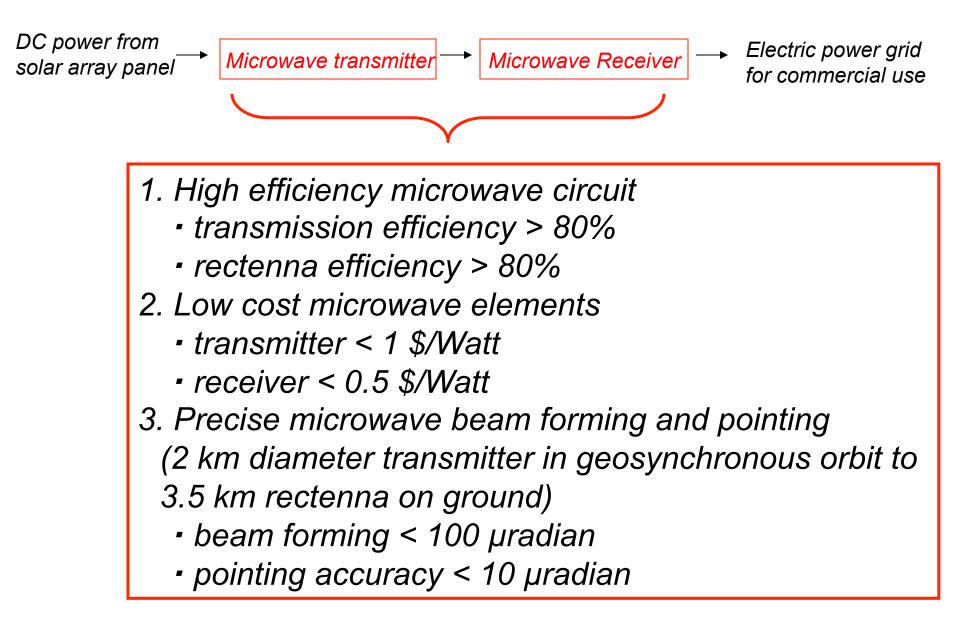

SPS2000 demonstration experiment(1994, ISAS)

Yamasaki 50 m transmission (1994, Kyoto Univ. Kobe Univ.)

Transmission to Balloon (1995, Kobe Univ.)

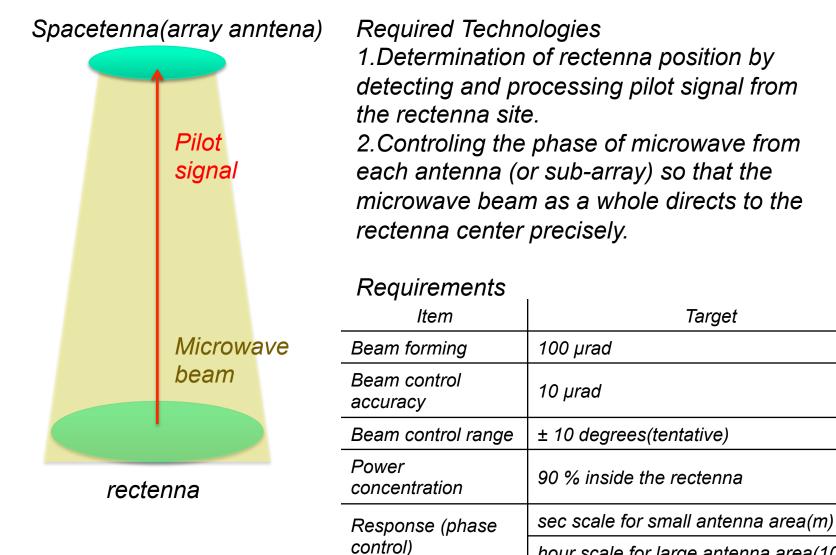


Transmission to rover experiment(2006, USEF)



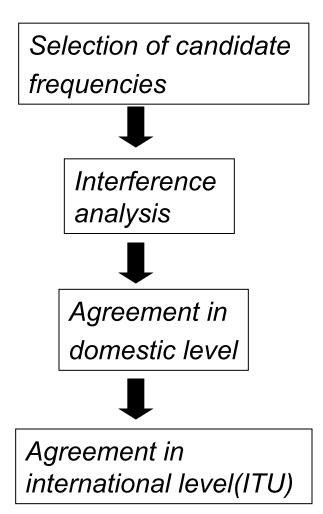
Hawaii long-range transmission (2008, Kobe Univ. & US team)

Microwave Power Transmission for SPS Issues for Microwave Power Transmission for SPS


Microwave Power Transmission Technologies for SPS

Current Performance of Microwave Elements

Subsystem	Туре	Efficiency /Loss	Power	Tasks required
<i>Microwave generator/ amplifier</i>	<i>Electronic tube(Magnetron , TWT, Clystron)</i>	70-80%	Several hundreds W~ Several MW	<i>Phased array configuration Weight (g/w) reduction</i>
	Semiconductor	50-60%	<i>Less than 100W</i>	Efficiency improvement Weight (g/w) reduction Cost reduction
<i>Microwave beam controller</i>	Phase shifter	-1dB/bit	Less than 10 W	Loss reduction Life improvement (MEMS)
Microwave receiver	Rectenna	80-90%	<i>More than 100 mW</i>	Efficiency improvement for array and low-power input

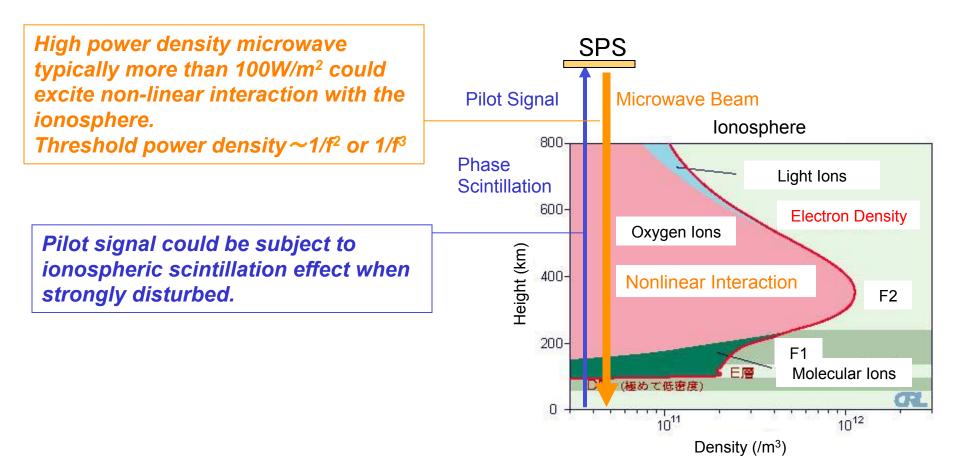

Technologies for Microwave Beam Control

hour scale for large antenna area(100m)

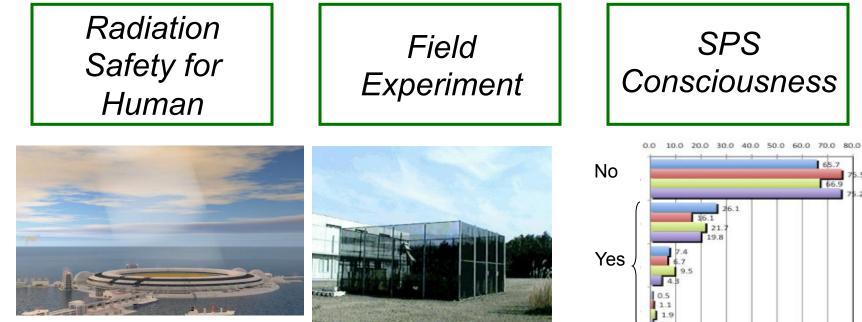
Frequency Allocation

Step

Current status & prospects

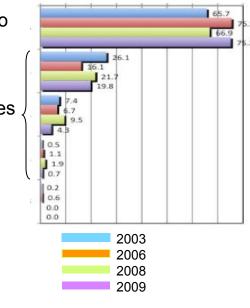

Candidates selected just for experiments (preliminary). Not yet for commercial use (less than 10 GHz).

Preliminary discussion just for experiments


Several years

International collaboration required Usually more than 10 years

Ionospheric Interaction



Public Acceptance

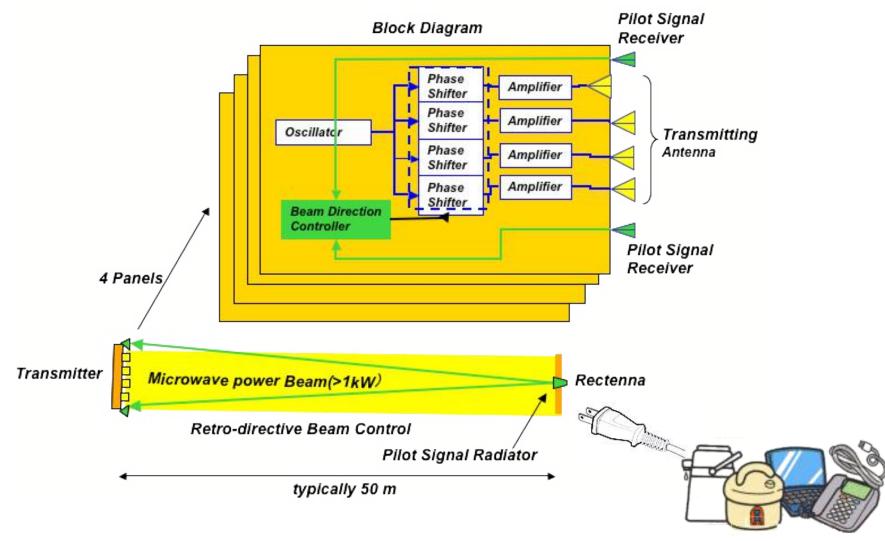
System Design Guidelines Inside the beam(rectenna): controlled as an evacuation area Outside the beam(rectenna): Less than international regulation level (1mW/cm²) with a margin

Long-duration microwave exposure facility to study microwave biological effects at National Institute of Advanced Industrial Science and Technology (AIST)

Almost 75 % of people don't know what SPS is. More publicity work is required.

Microwave transmission experiment for SPS

1 kW class experiment on ground1 kW class experiment in space100 kW class experiment in space


icrowave Power Transmission Experiment

General Concept
Transmission of a kilowatt-level microwave to a rectenna located typically at 50 m apart from the phased array transmitting antenna
Beam direction control by a pilot signal from the rectenna site

Objectives

to establish technologies to control a microwave power beam directing at a target rectenna, to establish technical readiness for the space experiment in the near future.

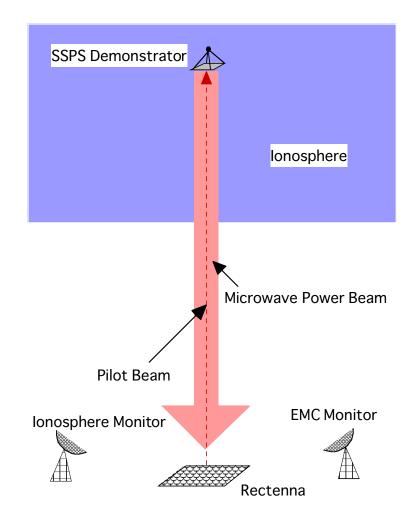
Microwave Power Transmission Demonstration

Rectenna output power will be used to operate household electric appliances for public demonstration.

Characteristics of Microwave Transmission Experiment on Ground

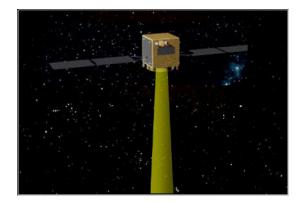
Transmitter configuratio n	4 panels movable to each other.
	400 W/panel(typical), 20 kg/panel (typical)
	76 sub-array/panel,
Microwave transmission	4 antennas/sub-array,
panel	60 cm x 60 cm, less than 4 cm thick
	conversion efficiency 35 %(typical)
Microwave amplifie r	5.8 GHz, 5 W, efficiency 60 %(typical)
Antenna configuration	0.65λ spacing
Microwaya haam control	retro-directive control using a pilot
Microwave beam control	signal from rectenna sit e
Phase control accuracy	5 bits
	rectenna panel 2.5m¢ (typical)
Rectenna	Array conversion efficiency to DC more
ποιατικά	than 50% (typical)
	Output power 350W (typical)
Transmission range	50 m (typical)

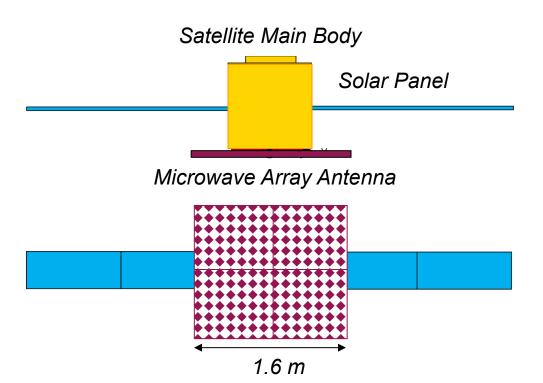
Two Possible Platforms for SPS Wireless Power Transmission Experiment in the Near Future



JAXA small scientific satellite to be launched by next-generation solid propellant rocket, Epsilon launch vehicle. 500 kg class satellite. Payload weight 200 kg typical. First flight will be in 2013.

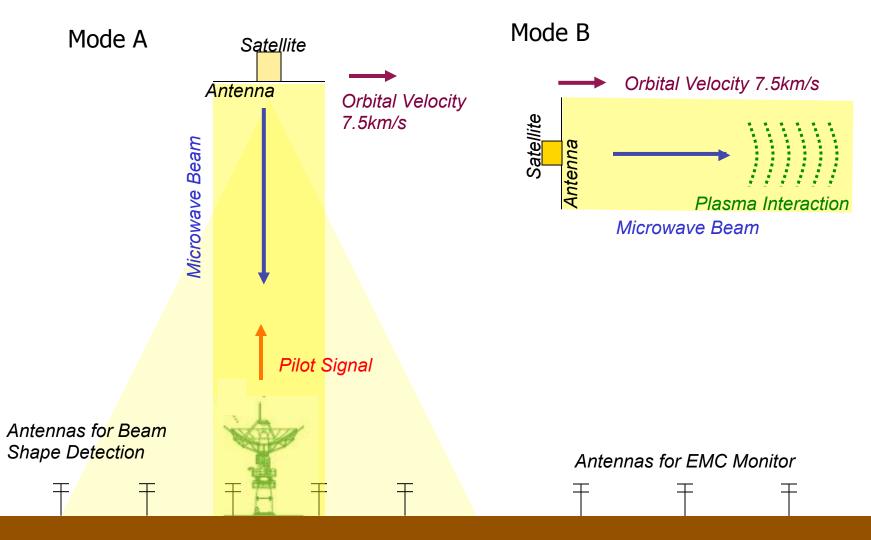
Japanese Experiment Module Kibo on the International Space Station (ISS), for science and technology research. Payload weight 500 kg typical.


Objectives of Microwave Power Transmission Experiment in Space


- (1) demonstration of the microwave beam control precisely to the target on the ground from the antenna in orbit,
- (2) verification of microwave power transmission (~kw/m²) through the ionosphere,
- (3) evaluation of the over-all power efficiency as an energy system,
- (4) demonstration of the electromagnetic compatibility with the existing communication infrastructure.

Experiment on Small Satellite

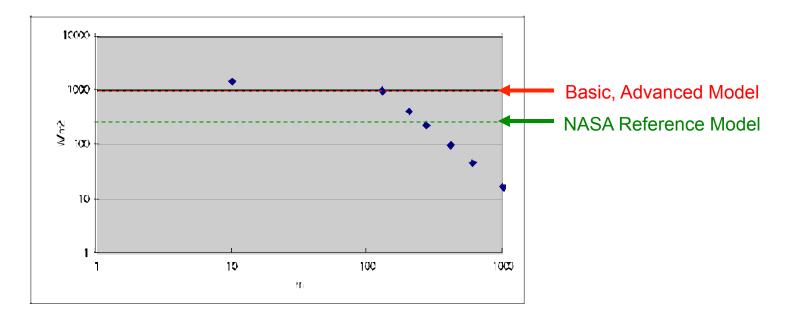
Orbit: Low Earth Orbit (370 km) Satellite Weight: 400 kg Mission Weight: 200 kg Attitude Control: 3-axis Stabilization Transmission Power: 3.8 kW



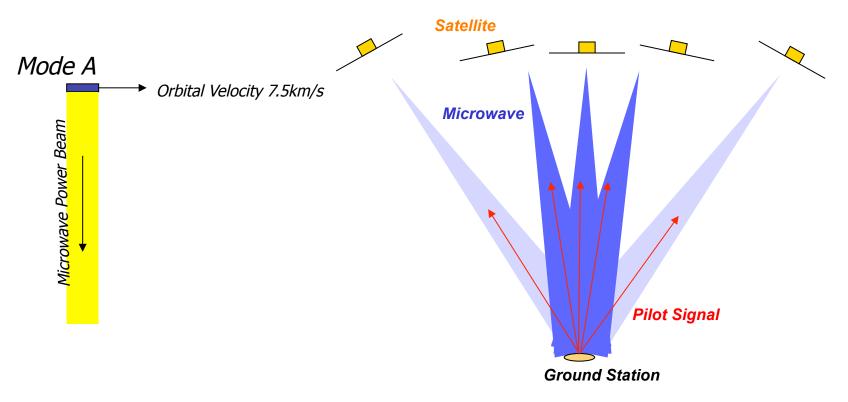
System Characteristics of Demonstration Model (Typical Example)

Mission	Period	1 year
	Configuration	Power transmission panel attached to satellite main body
System	Panel size	1.6 m x 1.6 m x 0.02 m
	Total weight	200 kg
	Attitude stability	±1°
	Frequency	5.8 GHz
	Configurationsatellite main bodySemPanel size1.6 m x 1.6 m x 0.02 mTotal weight200 kgAttitude stability±1°Frequency5.8 GHzPhase control5 bitNumber of module4Beam controlRetro-directive/Computer controlOutput power950 W/module, 3.8 kW(total)	5 bit
Frequency5.8 GHPhase control5 bitNumber of module4	4	
	Beam control	Retro-directive/Computer control, ±10°
<i>liansinission</i>	Output power	950 W/module, 3.8 kW(total)
	Power density	1500,1000, 500, 100 W/m ² (at antenna)
Gro	und stations	JAXA ground stations
		International experiment sites

Experiment Configuration


Ground

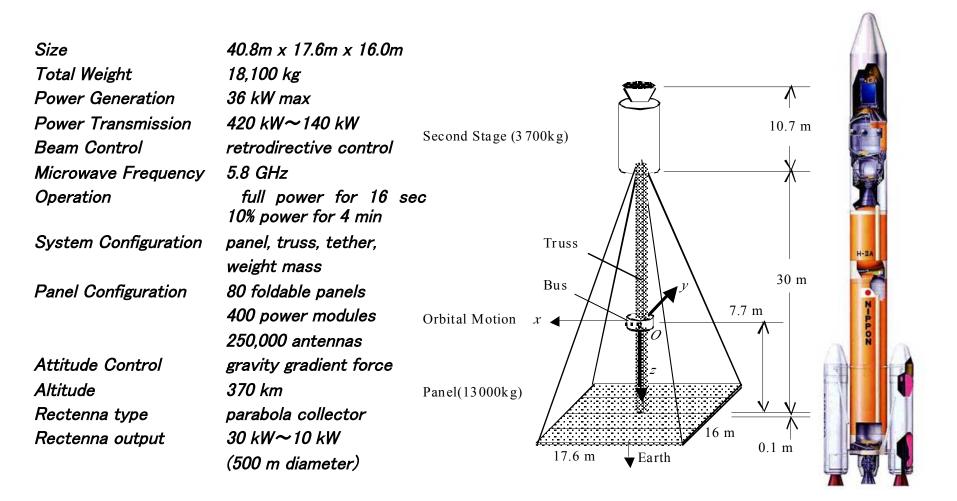
Microwave Power Transmission Experiment from JEM


2.4 m x 2.4 m Panel Size Frequency 5.8 GHz **Output Power** 8.64 kW

Microwave Power Density

Panel Size (9 panels) Frequency Output Power Power Density (>1000W/m²) Power Density (>230W/m²) Power Density(>100W/m²) Power Density(on ground) 2.4 m x 2.4 m 5.8 GHz 8.64 kW、1.5kW/m² 130 m 270 m 410 m 136µW/m²

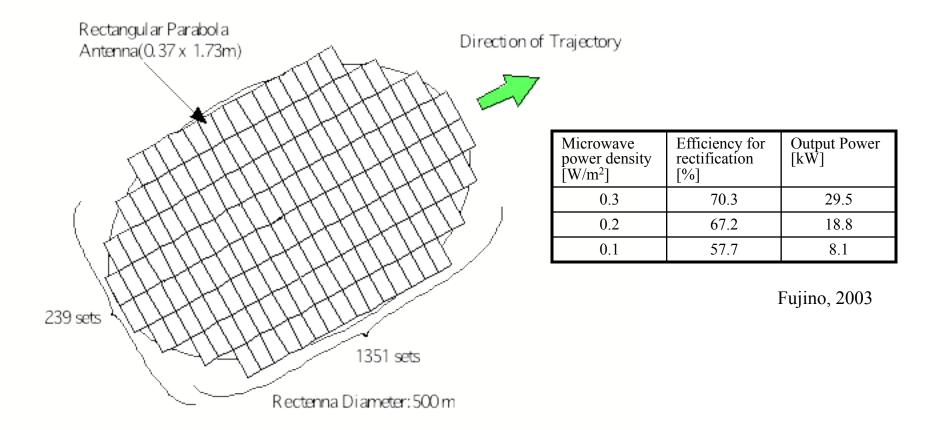
Verification of Beam Forming and Control



- •Beam forming according to array antenna theory (diffraction limit, beam width 3 degrees (null-to-null)) will be verified.
- Beam control accuracy according to retro-directive control theory (0.5 degrees accuracy (TBD)) will be verified.
- With experimental results, beam forming and beam control from geo-stationary orbit to ground can be evaluated quantitatively.

Verification of Microwave/Plasma Interaction

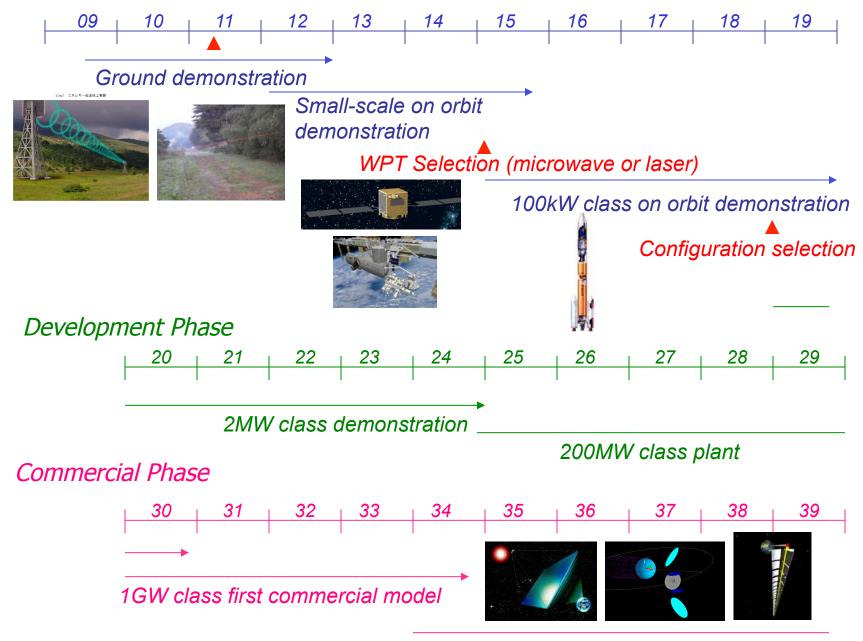
	Verification items			Mode A	Mode B
Mode B	Direction of microwave power beam			Ground	Orbit parallel
	Ionospheric plasma irradiation time			0.2ms	10ms
→ Orbital Velocity 7.5km/s	Research subject			Observation	
	lonosphere interaction	Heating	F-layer electrons heating	partially	yes
Microwave Power Beam			F-layer plasma density reduction	no	yes
Observation Ground Beam power density profile In-situ Electrons temperature, Plasma density, Plasma waves, Back-scatter waves			Lower ionosphere electrons heating and plasma density increase	no	no
		Thermal self- focusing	Electrons heating	partially	yes
			Plasma density reduction	no	yes
		Beam gradient self- focusing	Electrons heating and density reduction	yes	yes
			Plasma reduction	no	yes
		3-wave interaction	Back-scatter waves, plasma waves, electrons heating	yes	yes
	Beam control	Transmission to ground station		yes	no


100 kW class Demonstration Experiment

Height profile of the microwave power density

Configuration of Rectenna for 100 kW class Demonstration Experiment

Roadmap towards Commercialization


Conclusion& Summary

Verification Matrix towards Commercial SPS

Phase	Ground Demonstration	Small Satellite or JEM on Space Station	Large Satellite	Small Plant	Verification Plant
Verification	kW Ground	kW Low Earth Orbit	100kW Low Earth Orbit	2MW 1000 km Altitude	200 MW Geostationary Orbit
Beam Control	50-100m	400km	400km	1000km	36000km
lonosphere/ atmosphere transmission	-	1kW/m²	1kW/m²	1kW/m²	1kW/m²
Power Transmission	(Test Rectenna kW)	-	Small Rectenna 10kW	Large Rectenna 2MW	Large Rectenna 200MW
SPS Total Function	-	-	10kW	2MW	200MW
Power for Practical Use	-	-	-	2MW	200MW

Research Phase

Summary

Commercial SPS (1SPS/year)

Summary and Conclusion

 One of the most critical technologies for the SPS is microwave power transmission from the geosynchronous orbit to the ground.

 Evolutionary microwave transmission technologies are required for a high power conversion efficiency more than 80 % from/to DC and an extremely high-precise beam control with 10 µrad accuracy.

•These technologies will be partially verified in the ground demonstration experiment within several years and will be fully verified in the space experiments within 10 years.

•Although the required technologies are quite challenging, continuing research activities along with the proposed roadmap will lead to opening the new SPS era in 2030's.