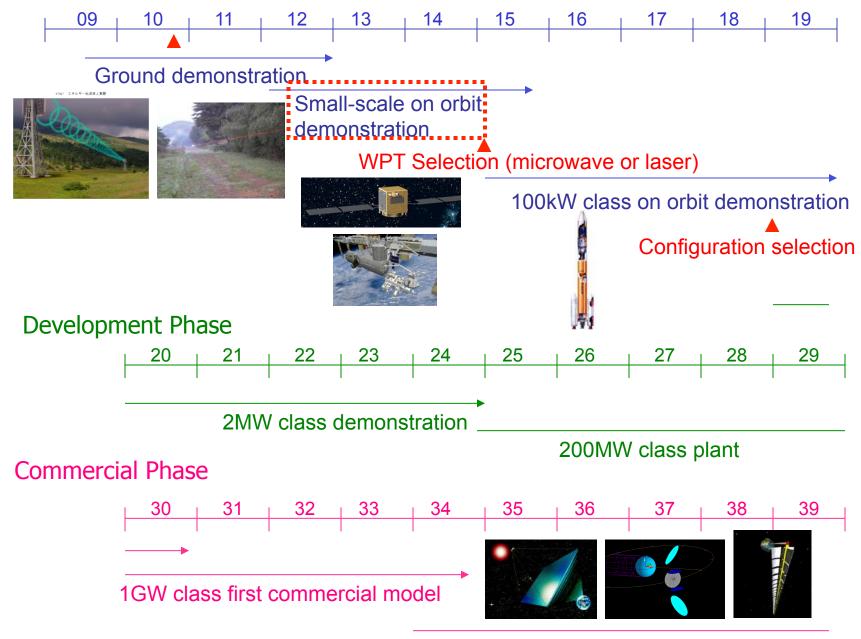

SSPS Technologies Demonstration in Space

- Roadmap towards Commercial SSPS
- 1 kW Class Microwave Power Transmission Experiment in Space
- 1 kW Class Laser Power Transmission Experiment in Space

September 2010

Examples of Commercial SSPS Models Currently Studied in Japan



Basic Microwave-type Model (USEF/METI) Advanced Microwave-type Model (JAXA/MEXT)

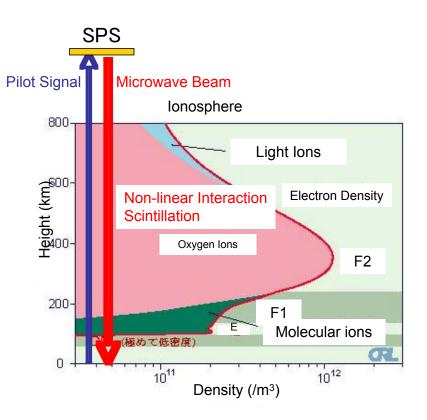
Laser Model (JAXA/MEXT)

USEF/METI:Unmanned Space Experiment Free Flyer/ Ministry of Economy, Trade and Industry JAXA/MEXT:Japan Aerospace Exploration Agency/ Ministry of Education, Culture, Sports, Science and Technology

Research Phase

Commercial SSPS (1SSPS/year)

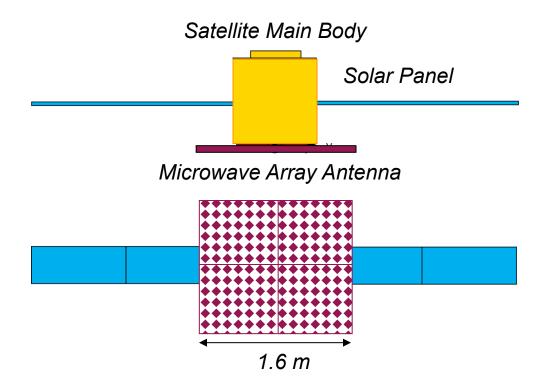
Two Possible Platforms for SSPS Wireless Power Transmission Experiment in the Near Future



Epsilon Launch Vehicle for small satellite Next-generation solid propellant rocket to reduce the cost by a third of that for the former M-V launch vehicle. First flight will be in 2013.

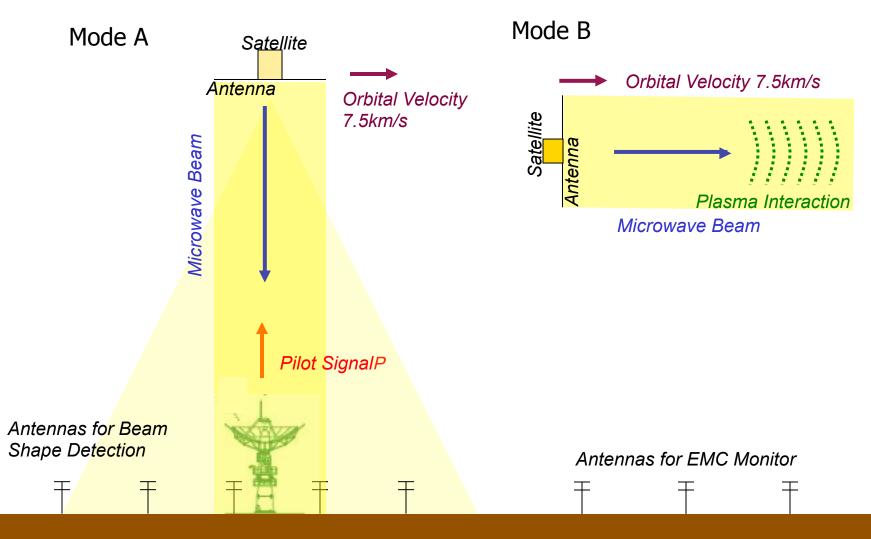
Japanese Experiment Module Kibo on the International Space Station (ISS), for science and technology research. Mission extended for 5 years.

Microwave Transmission Experiment in Space

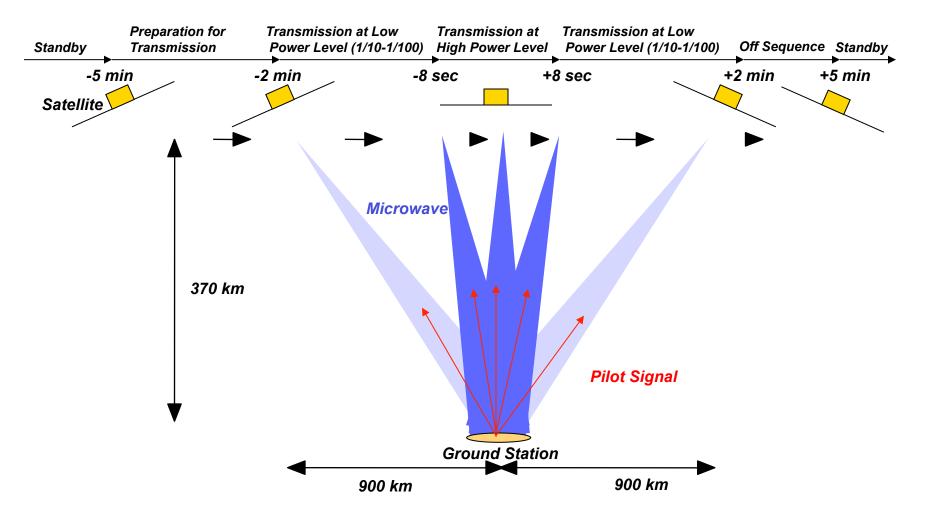

- (1) demonstration of the microwave beam control precisely to the target on the ground from the antenna in orbit,P
- (2) verification of microwave power transmission (~kw/m²) through the ionosphere,
- (3) evaluation of the over-all power efficiency as an energy system,F
- (4) demonstration of the electromagnetic compatibility with the existing communication infrastructure.

Experiment on Small Satellite

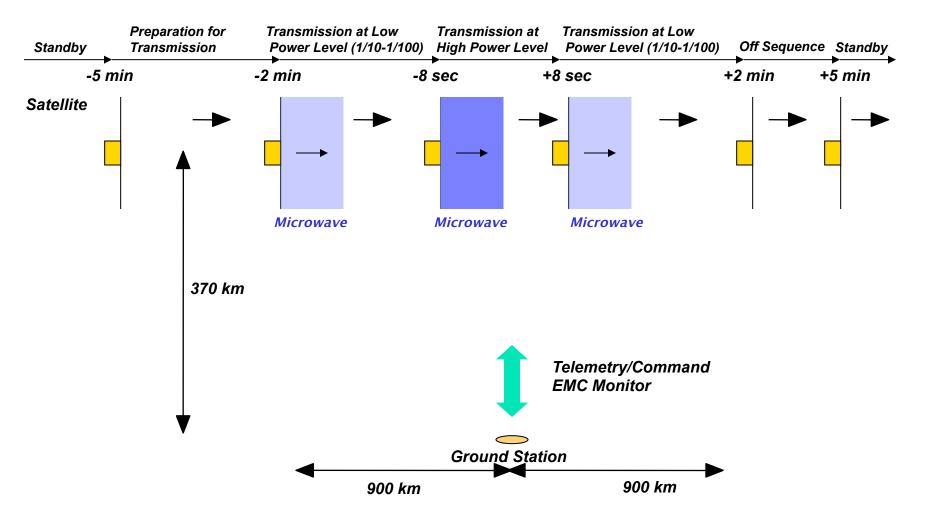
Orbit: Low Earth Orbit (370 km) Satellite Weight: 400 kg Mission Weight: 200 kg Attitude Control: 3-axis Stabilization Transmission Power: 3.8 kW



System Characteristics of Demonstration Model (Typical Example)


Mission	Period	1 year			
	Configuration	Power transmission panel attached to satellite main body			
System	Panel size	1.6 m x 1.6 m x 0.02 m			
	Total weight	200 kg			
	Attitude stability	±1°			
	Frequency	5.8 GHz			
	Phase control	5 bit			
Deuror	Number of module	4			
Power -	Beam control	Retro-directive/Computer control, ±10°			
transmission	Output power	950 W/module, 3.8 kW(total)			
	Power density	1500,1000, 500, 100 W/m² (at antenna) 24 μW/m²(max, on ground)			
Ground stations		JAXA ground stations International experiment sites			

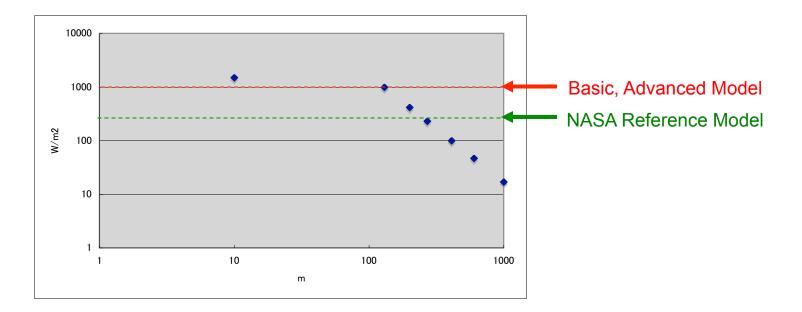
Experiment Configuration



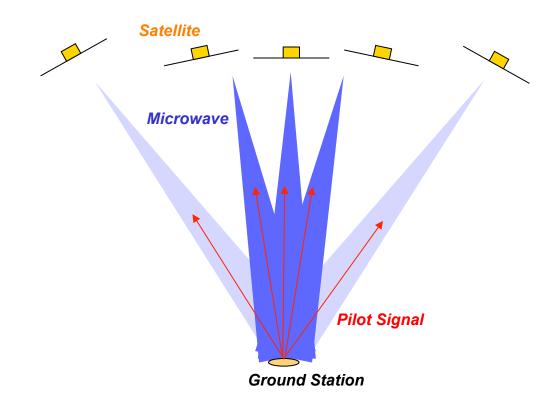
GroundP

Experimental Sequence (Mode A)_P

ExperimentalSequenceSModeSB)P



Microwave Power Transmission Experiment from JEM


Panel Size Frequency Output Power 2.4 m x 2.4 m 5.8 GHz 8.64 kW

Microwave Power DensityS

Panel Size (9 panels) Frequency Output Power Power Density (>1000W/m²)P Power Density (>230W/m²) P Power Density(>100W/m²) Power Density(on ground) 2.4 m x 2.4 m 5.8 GHz 8.64 kW, 1.5kW/m² 130 m 270 m 410 m 136µW/m²

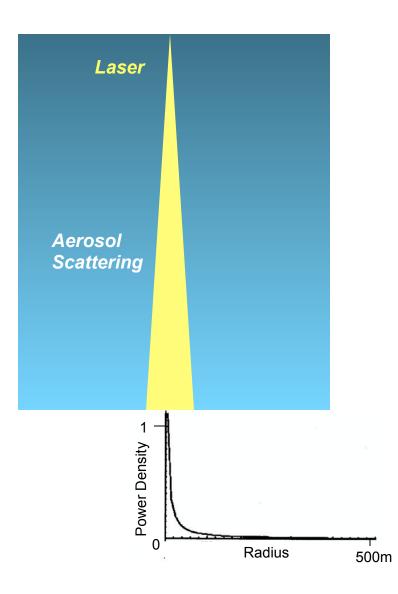
Verification of Beam Forming and Control

- •Beam forming according to array antenna theory (diffraction limit, beam width 3 degrees (null-to-null)) will be verified.
- Beam control accuracy according to retro-directive control theory (0.5 degrees accuracy (TBD)) will be verified.
- With experimental results, beam forming and beam control from geo-stationary orbit to ground can be evaluated quantitatively. P

VerificationSofSMicrowave/PlasmaSnteraction

Mada	Verification items			Mode A	Mode B
Mode A Orbital Velocity 7.5km/s	Direction of microwave power beam			Ground	Orbit parallel
ε	Ionospheric plasma irradiation time			0.2ms	10ms
Bea	Research subject			Observation	
Jower			F-layer electrons heating	partially	yes
Microwave Power Beam	<i>lonosphere</i> <i>interaction</i>	Heating	F-layer plasma density reduction	no	yes
Micro			Lower ionosphere electrons heating and plasma density increase	no	no
		Thermal self- focusingP	Electrons heating	partially	yes
Mode B → Orbital Velocity 7.5km/s			Plasma density reduction	no	yes
		Beam gradient self- focusingP	Electrons heating and density reduction	yes	yes
Microwave Power Beam			Plasma reduction	no	yes
Observation Ground Beam power density profile In-situ Electrons temperature,		3-wave interaction	Back-scatter waves, plasma waves, electrons heatin g	yes	yes
Plasma density, Plasma waves, Back-	Beam control	Transmission to ground station		yes	no
scatter wavesP					

Issues for the Microwave Power Transmission Experiment in Space

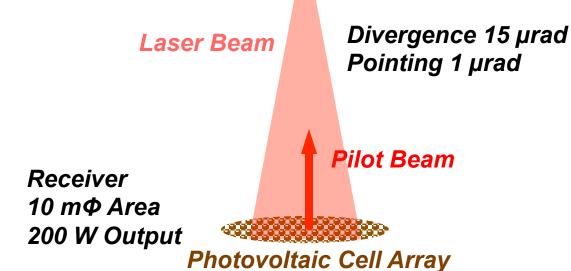

(1) Frequency assignment for the microwave power transmission experiment has not been negotiated yet,P

(2) Diagnostic instruments have not been well defined to study the microwave-plasma interaction,

(3) It is hard to see yet how to meet EMC regulations in case of JEM experiment.

Laser Transmission Experiment in Space

- (1) demonstration of the laser beam control precisely to the target on the ground from the transmitter in orbit,P
- (2) verification of laser power transmission through the atmosphere,
- (3) evaluation of the over-all power efficiency as an energy system,P
- (4) demonstration of laser safety for public acceptance.



Laser Power Transmission Experiment from JEM (an example)

International Space Station JEM

Transmitter 1 kW, 1.06 μm 20 cmΦ Optics

Issues for the Laser Power Transmission Experiment in Space

(1)Beam pointing technologies to assure the μ-radian accuracy while tracking at 1 degree/sec have not been established yet (1 degree/sec tracking is not required for commercial SSPS in the geosynchronous orbit),P

(2) It is hard to see yet how to guarantee "eye safety" requirement in case of system failure.

Verification Matrix towards Commercial SSPS

Phase	Ground Demonstration	Small Satellite or JEM on Space Station	Large Satellit e	Small Plant	Verification Plant
Verification	kW Ground	kW Low Earth Orbit?	100kW Low Earth Orb i ®	2MW 1000 km Altitude	200 MW Geostationary Orbit
Beam Control	100m	400km	400kn₽	1000km	36000km
lonosphere/ atmosphere transmission	-	1kW/m²	1kW/m [₽]	1kW/m [₽]	1kW/m [₽]
Power Transmission	(Test Rectenna kW)	-	Small Rectenna 10kW	Large Rectenna 2MW	Large Rectenna 200MW
SPS Total Function	-	-	10kW	2MW	200MW
Power for Practical Use	-	-	-	2MW	200MW

Near Term Target

Summary and Conclusion

- **SKW-class wireless power transmission systems with** 100-500 m range , both for microwave and laser, are now under development and will be completed within three years.
- **Solution Series and Series and**
- Ster an assessment of the results from the ground and space experiments, we propose to conduct a larger-scale experiment of 100 kW class in orbit, using microwave or laser.
- •This approach is in accordance with the basic plan on space development by the government's space development strategy headquarter in Japan.