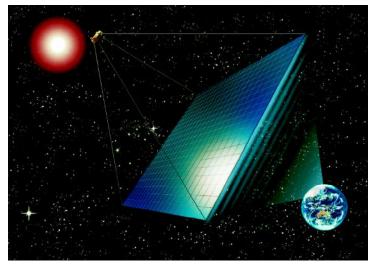

SPS Concepts and Activities at the Japan Aerospace Exploration Agency

- Commercial SPS Models Currently Studied in Japan
- Roadmap towards Commercial SPS
- •1 kW Class Wireless Power Transmission Experiment on Ground
- 1 kW Class Microwave Power Transmission Experiment in Space

Commercial SPS Models Currently Studied in Japan



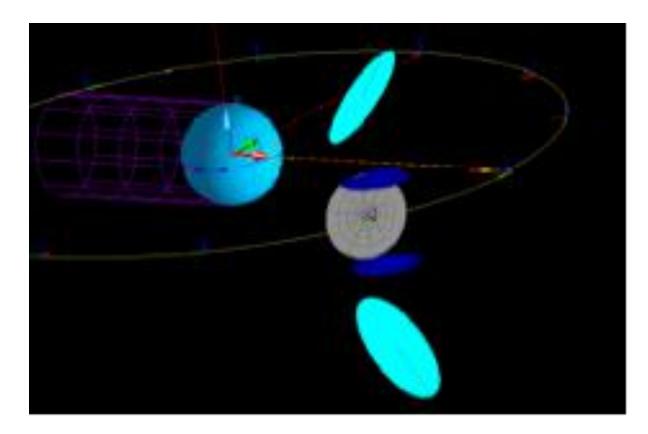
Basic Microwave-type Model (USEF/METI) Advanced Microwave-type Model (JAXA/MEXT)

Laser Model (JAXA/MEXT)

USEF/METI:Unmanned Space Experiment Free Flyer/ Ministry of Economy, Trade and Industry JAXA/MEXT:Japan Aerospace Exploration Agency/ Ministry of Education, Culture, Sports, Science and Technology

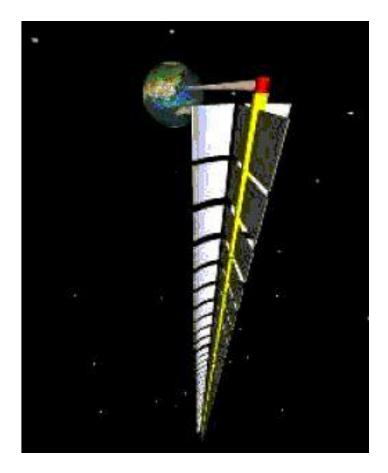
Microwave-type SPS (Basic Type, Tethered-SPS)

Single-Bus Model


Earth pointing 1 GW-SPS Power generation/transmission panel 2km x 1.9km x(2-10)cm^t Suspended by tether wires of 5-10 km Unit panel 100m x 100m size Total weight 20,000 tons

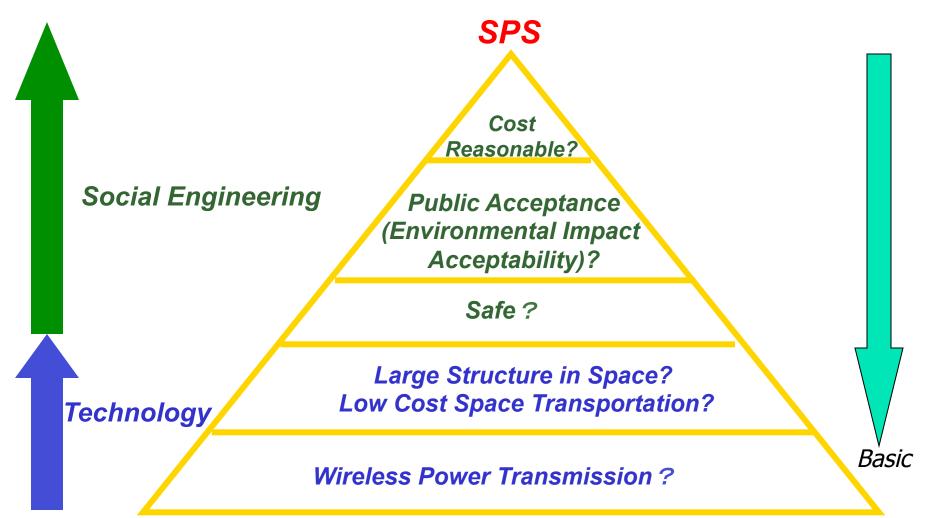
Simple but low rate power collection (64%)

Multi-Bus Model


Microwave-type SPS (Advanced Type)

Sun pointing 1GW-SPS Reflection mirrors (free flying) :2.5 km x 3.5 km

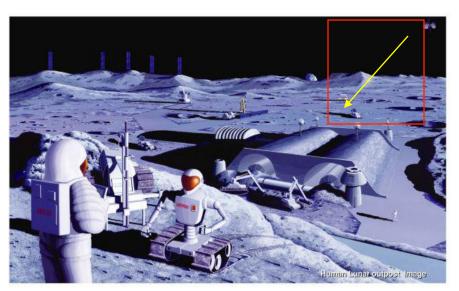
1000 tons x 2sets, **POWePge/fer**ation: 1.25 kmΦx2 sets Power transmission: 1. 8 kmΦ Total weight: 10,000 tons(target) Complicated but high rate power collection


Laser-type SPS

1GW Model, 10MW Module x 100 Reflective mirrors: 100m x 100 m x2 Radiator: 100 m x 100 m Laser excitation directly from the sunlight Nd:YAG crystal(Cr doped) Light concentration 500-1000 times Total weight:5000 tons(target) Beam diameter:400m Small Scale, but technologies prematured

Questions to be Answered towards SPS

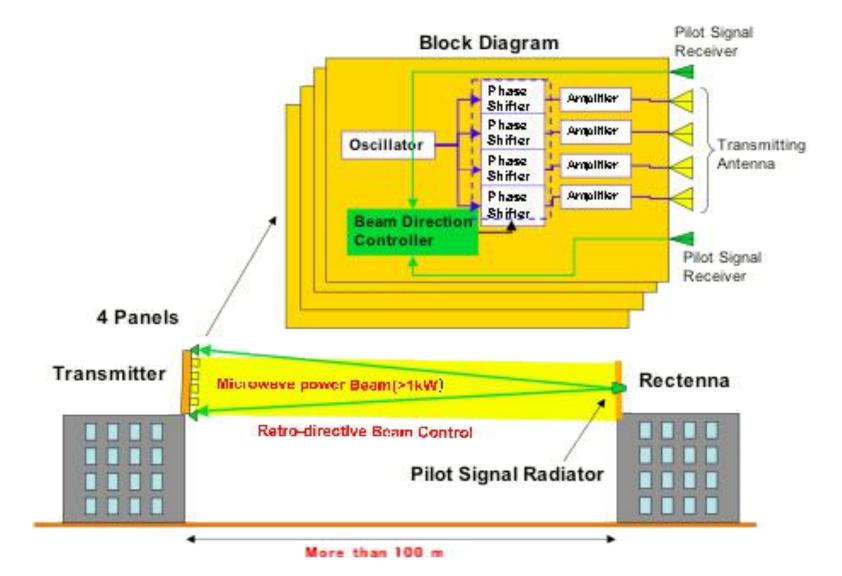
All questions should be answered with "YES" eventually. Upper level question can be answered only when the lower level question is answered with "YES". We have to start with the most basic (lowest level) question to answer "YES".


Laser Power Transmission for Lunar Exploration

Shackleton crater, a potential candidate for water ice

Power transmission to a rover in the shadow inside the crater

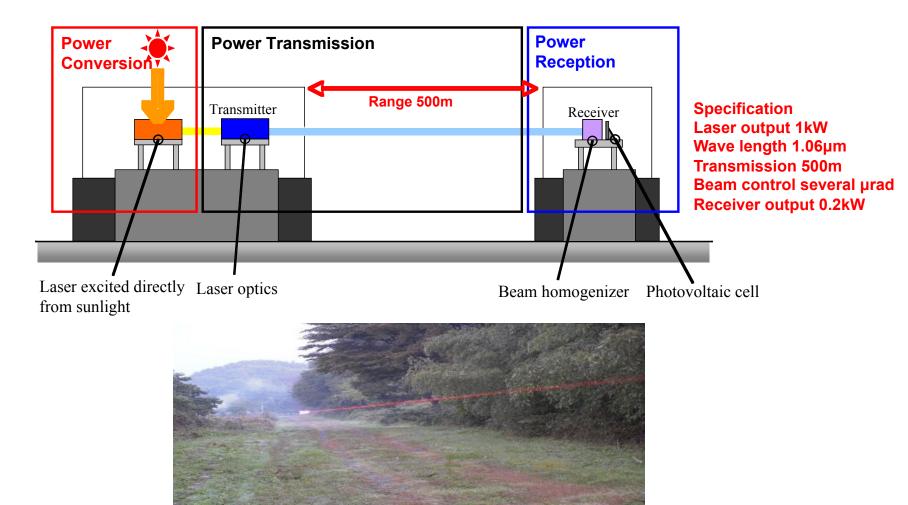
Power transmission from lunar orbit to lunar base


icrowave Power Transmission Experiment

General Concept
Transmission of a kilowatt-level microwave to a rectenna located typically at 100 m apart from the phased array transmitting antenna
Beam direction control by a pilot signal from the rectenna site

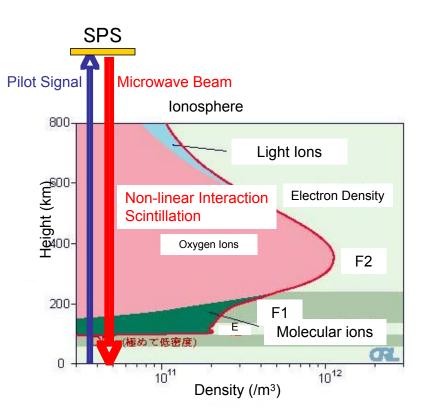
Objectives

to establish technologies to control a microwave power beam directing at a target rectenna, to establish technical readiness for the space experiment in the near future.


Configuration of Microwave Power Transmission Experiment

Characteristics of Microwave Transmission Experiment on Ground

Transmitter configuratio n	4 panels movable to each other. 700W/panel, 30 kg/panel (typical),		
Microwave transmission panel	 169 sub-array/panel, 4 antennas/sub-array, 80 cm x 80 cm, 2cm thick microwave conversion efficiency >40 % 		
Microwave amplifie r	5.8 GHz, 4.5 W, efficiency >50 %		
Antenna configuration	0.65λ spacing		
Microwave beam control	Retro-directive control using a pilot signal from rectenna sit e		
Phase control accuracy	5 bits		
Rectenna configuratio n	2.5 m x 2.5m, 72 modules DC conversion efficiency >70%		
Transmission range	100 m (typical)		


Laser-SPS Demonstration Experiment on Ground(1kW class)

Laser Power Transmission experiment(200W class) at Kakuta/JAXA

Microwave Transmission Experiment in Space

- (1) demonstration of the microwave beam control precisely to the target on the ground from the antenna in orbit,
- (2) verification of microwave power transmission (~kw/m²) through the ionosphere,
- (3) evaluation of the over-all power efficiency as an energy system,
- (4) demonstration of the electromagnetic compatibility with the existing communication infrastructure.

System Characteristics of Demonstration Model

Mission	Period	1 year	
System	Configuration	Power generation/transmission panel suspended by 4 wires	
	Panel size	1.6m x 1.6 m x 0.02m	
	Tether wire length	30 - 100 m	
	Total weight	200 kg	
	Attitude stability	±1°	
Power generation	Thin film solar cell array	350 W (85 W/module)	
Power transmission	Frequency	5.8 GHz	
	Phase control	5 bit	
	Number of module	4	
	Beam control	Retro-directive/Computer control, ±10°	
	Output power	950W/module, 3.8kW(total)	
	Power density	1500,1000, 500, 100W/m ² (at antenna) 1.9 μ W/m ² (max, on ground)	
Ground stations		JAXA ground stations International experiment sites	

100 kW class Demonstration Experiment

Size	40.8m x 17.6m x 16.0m		
Total Weight	18,100 kg		
Power Generation	36 kW max		
Power Transmission	420 kW~140 kW		
Beam Control	retrodirective control		
Microwave Frequency	5.8 GHz		
Operation	full power for 16 sec 10% power for 4 min		
System Configuration	panel, truss, tether, weight mass		
Panel Configuration	80 foldable panels 400 power modules 250,000 antennas		
Attitude Control	gravity gradient force		
Altitude	370 km		
Rectenna type	parabola collector		
Rectenna output	30 kW~10 kW		
	(500 m diameter)		

Verification Matrix towards Commercial SPS

Phase I Verification	Ground Demonstration	Small Satellite or JEM on Space Station	Large Satellite	Small Plant	Verification Plant
	kW Ground	kW Low Earth Orbit	100kW Low Earth Orbit	2MW 1000 km Altitude	200 MW Geostationary Orbit
Beam Control	100m	400km	400km	1000km	36000km
lonosphere/ atmosphere transmission	-	1kW/m²	1kW/m²	1kW/m²	1kW/m²
Power Transmission	(Test Rectenna kW)	-	Small Rectenna 10kW	Large Rectenna 2MW	Large Rectenna 200MW
SPS Total Function	-	-	10kW	2MW	200MW
Power for Practical Use	-	-	-	2MW	200MW

Summary and Conclusion

- Three commercial SPS models currently studied in Japan; basic microwave-type, advanced microwave-type, and laser type, are introduced.
- As the first demonstration on the ground towards the commercial models, kW-class wireless power transmission experiments with100-500 m range is now under development and will be completed within three years, both for microwave and laser.
- Immediately after the ground demonstration experiment, we will start a small-scale experiment in orbit to transmit a 1 kW class microwave power to the ground.
- After an assessment of the results from the ground and space experiments, we propose to start a larger-scale experiment of 100 kW class in orbit.
- •This approach is in accordance with the basic plan on space development by the government's space development strategy headquarter in Japan.