Japanese Concept of Microwave-type SSP8

Commercial Microwave-type SSPS
Roadmap for Commercial SSPS
Power Transmission Experiment on the Ground
Small Scale Microwave Power Transmission Experiment in Space

September 2009

Commercial SSPS Currently Studied *in Japan*

Basic Microwave-type Model (USEF/METI) Advanced Microwave-type Model (JAXA)

Laser Model (JAXA)

Microwave-type SSPS (Basic Type) Tethered-SPS (Single-Bus Model)

Earth pointing SSPS Power generation/transmission Panel 2kmx1.9kmx(2-10)cm^t Suspended by tether wires of 5-10 km Unit panel 100m x 100m size Total weight 20,000 tons

Simple but low rate power collection (64%)

Unit of Tethered-SPS with Existing Technologies

Microwave-type SSPS (Basic Type) Tethered-SPS (Multi-Bus Model)

Microwave-type SSPS (Advanced Type) Current Model

Sun pointing SSPS Reflection mirrors (free flying) :2.5 km x 3.5 km

1000 tons x 2sets、 **POWePge/fe**ration: 1.25 kmΦx2 sets Power transmission: 1. 8 kmΦ Total weight: 10,000 tons(target) Complicated but high rate power collection

Japanese Roadmap for SSPS

Microwave Power Transmission Experiment on Ground

General Concept

- Transmission of a kilowatt-level microwave to a rectenna located typically at 100 m apart from the the phased array transmitting antenna
- Beam direction control by a pilot signal from the rectenna site

Objectives

- to establish technologies to control a microwave power beam directing at a target rectenna,
- to establish technical readiness for the space experiment in the near future.

Configuration of Microwave Power Transmission Experiment

Block Diagram of Microwave Transmitter

Characteristics of Microwave Transmission Experiment on Ground

Transmitter configuratio n	4 panels movable to each other. 700W/panel, 30 kg/panel (typical),	
Microwave transmission panel	 169 sub-array/panel, 4 antennas/sub-array, 80 cm x 80 cm, 2-10cm thick microwave conversion efficiency 40 % 	
Microwave amplifie r	5.8 GHz, 4.5 W, efficiency 50 %	
Antenna configuration	0.65 λ spacing	
Microwave beam control	Retro-directive control using a pilot signal from rectenna sit e	
Phase control accuracy	4 or 5 bits	
Rectenna configuratio n	16 flexible panels, 2m x 2m/panel, DC conversion efficiency 75%	
Transmission range	100 m (typical)	

Laser-SPS Demonstration Experiment on Ground(1kW class)

Laser Power Transmission experiment(200W class) at Kakuta/JAXAP

Microwave Transmission Experiment in Space

- (1) demonstration of the microwave beam control precisely to the target on the ground from the antenna in orbit,P
- (2) verification of microwave power transmission (~kw/m²) through the ionosphere,
- (3) evaluation of the over-all power efficiency as an energy system,F
- (4) demonstration of the electromagnetic compatibility with the existing communication infrastructure.

System Characteristics of Demonstration Model (Option B)

Mission	Period	1 year
System	Configuration	Power generation/transmission panel suspended by 4 wires
	Panel size	1.6m x 1.6 m x 0.1m
	Tether wire length	30 m
	Total weight	200 kg
	Attitude stability	±1°
Power generation	Thin film solar cell array	350 W (85 W/module)
Power transmission	Frequency	5.8 GHz
	Phase control	5 bit
	Number of module	4
	Beam control	Retro-directive/Computer control, ±10°
	Output power	700W/module, 2.8kW(total)
	Power density	1,100W/m ² (antenna)
		1.4μ W/m ² (ground)
Ground stations		JAXA ground stations
		International experiment sites

Experimental Configuration using Small Satellite

Gravity Gradient Stabilization

Option B (2800W, 200 kg)

Experimental Configuration using JEM on Space Station

Summary and Conclusion

- Structure of the second stru
- As the first demonstration on the ground towards the commercial models, high-precision microwave beaming at 1kw class with100 m range will be conducted within several years.
- Some diately after the ground demonstration experiment, we will perform a small-scale experiment in orbit to transmit a 1 kW class microwave power to the ground.
- •This approach is now reflected on the basic plan on space by the government's space development strategy headquarter.