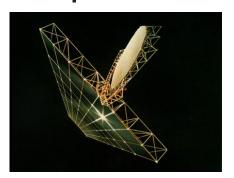
Demonstration Experiment for Tethered-Solar Power Satellite

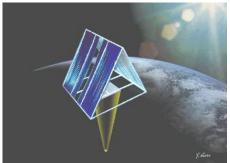
- Concept of Tethered-SPS
- Demonstration Experiment

Objectives

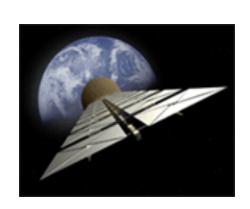

System

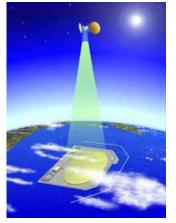
Operation

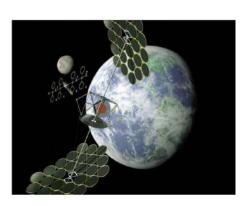

June 2008


Typical Examples of SPS

NASA Reference System 5GW, 1979

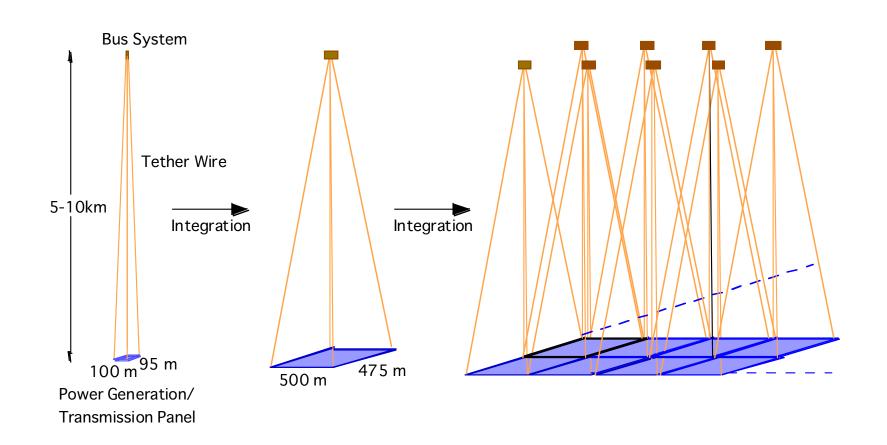

NEDO Grand Design 1GW, 1992


SPS 2000 10MW, 1993


NASA Sun Tower 250MW, 1995

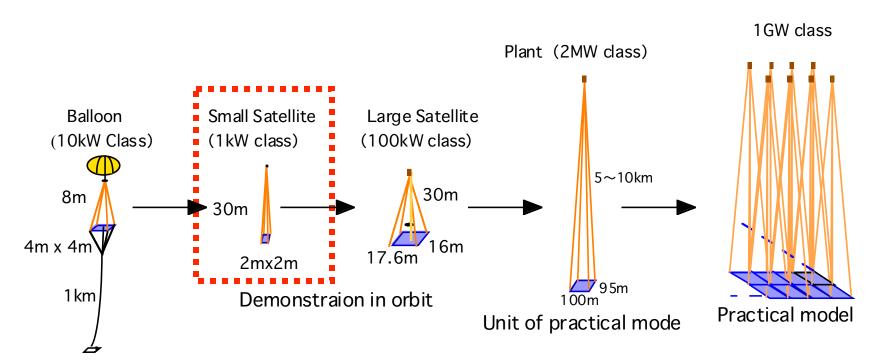
ESA Sail Tower 450MW, 1999

NASDA (JAXA) Model, 1GW, 2001


NASA ISC Model 1GW, 2001

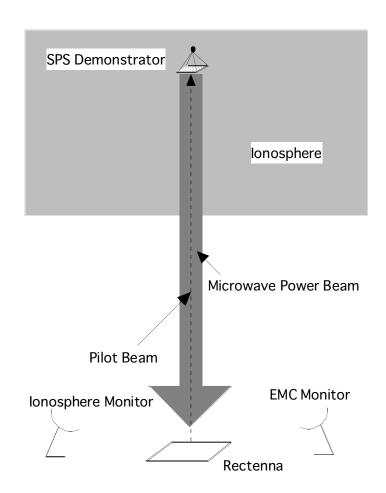
Tethered-SPS 1GW, 2005

Concept of Tethered-SPS (Separated-bus Type)


System Characteristics of Tethered SPS (Constant Power)

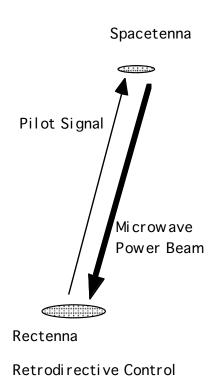
	Item	Performance	Note	
Tethered SPS	Weight	26,562 MT	25,234MT(Panel), 1,328MT(Bus)	
	Size	2.5 km x 2.375 km x (5-10) km	250 Tethered SPS modules	
	Output Power	1.36 GW	Microwave frequency 5.8 GHz	
Tethered SPS	Weight	42.5 MT	40,375 kg(Panel), 2,125 kg(Bus)	
Module	Tether Length	2-10 km	Width 1cm, Para-aramid fiber (Kevlar/DuPont), UV protection coating	
	Panel Size	100m x 95 m	100x 95 Power generation/ Transmission modules	
	Output Power	2.2 MW	Microwave frequency 2.45 GHz	
Power Generation/ Transmission Module	Weight	4.25 kg	Microwave circuit 2.3kg(10g/W) Solar cell 0.45kg(0.5g/W) Batteriies 1.0kg(2000Wh/kg) Structure 0.5kg(0.025g/cc)	
	Size	1 m x 1m x 2 cm		
	Output Power	230 W	Microwave frequency 2.45 GHz	

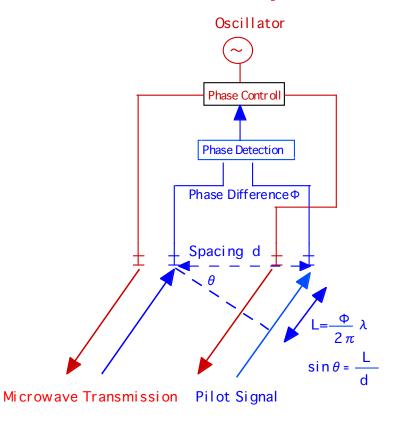
Evolutionary Development from Demonstration Model to Commercial Model



Demonstration on ground

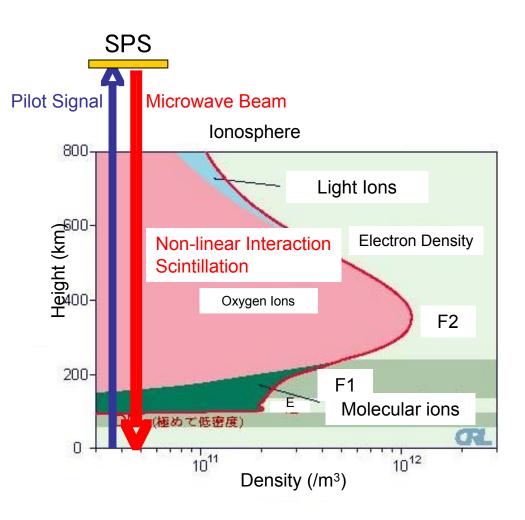
Objectives of Small Satellite SPS


- (1) demonstration of the microwave beam control precisely to the target on the ground from the antenna in orbit,
- (2) evaluation of the over-all power efficiency as an energy system,
- (3) demonstration of the electromagnetic compatibility with the existing communication infrastructure, and,
- (4) study of the operational procedure of the SPS.



On-orbit Verification of Microwave Beam Control

*Retro-directive beam control to propagate the microwave beam in a long distance through the ionosphere to the rectenna on ground. *Precise beam control under pitch and roll motion of spacecraft.

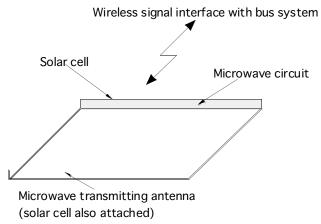

Verification of Microwave Transmission through the lonosphere

Important Process

1. Phase Disturbance Stationary: ~10λ (N=5x10¹⁷ e/m²)

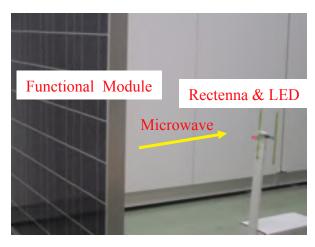
Scintillation: $\sim \lambda (\Delta N = 5x10^{16} \text{ e/m}^2)$

2. Non-linear effects Self-concentration



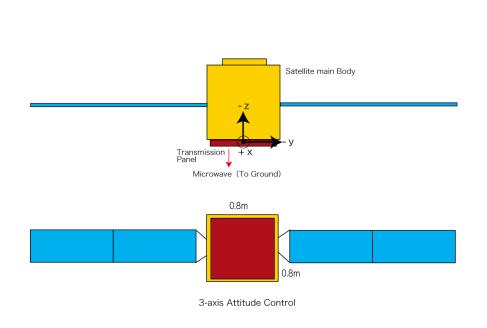
Comparison of System Weight

Phase	Model	Output Powe	Total Weight	Specific Weight	Reference
Commercial	NASA Reference System	6.5 GW	50000 MT	7.7 g/W	
	NASDA 2002 Model	1.34 GW	10000 MT	7.5 g/W	NASDA SSPS Committee Report, 2001
	Tethered-SPS	1.32 GW	27000 MT	20 g/W	
	Sun Tower(GEO)	1.2 GW	15700 MT	13 g/W	Powell et al., 51st IAC, 2000
	Integrated Symmetrical Concentrator	1.2 GW	18000~31500 MT	15g/W~26g/ W	Carrington and Feingold, IAC-02- R.P.12
	European Sail Tower	275 MW	2140 MT	7.8 g/W	Seboldt et al., Acta Astronautica, 2001
	SPS2000	10 MW	240 MT	24 g/W	Conceptual Design Report, 1993
Demonstration & Experiment	SPS-WT Experiment Satellite	100kW	8 MT (power generation, transmission)	80g/W	NASDA SSPS Committee Report, 2001
	Tethered-SPS Experiment System for Large satellite	280 kW	18.1 MT	65 g/W	S.Sasaki et al., ISAS Res.Note 2005
	Tethered SPS Experiment System for Small Satellite	0.7kW-2.8k W	65 kg ~ 200 kg	93 g/W ~ 71g/W	


Power Generation/Transmission Module

Power generation/transmission module

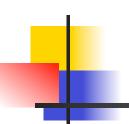
Functional model of module (solar cell side)


Power Transmission Demonstration

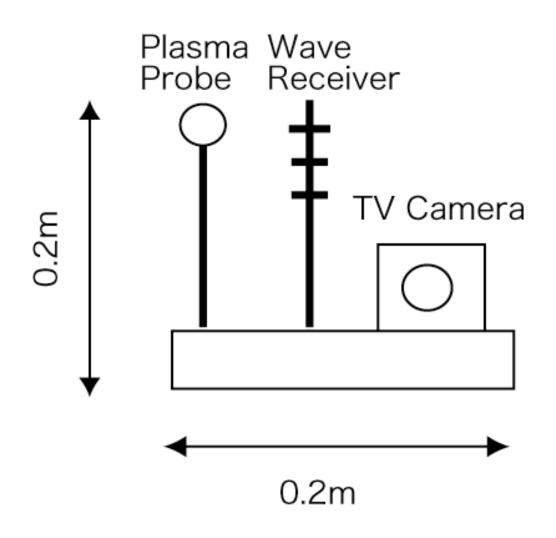
Functional model of module (microwave antenna side)

Satellite Configuration

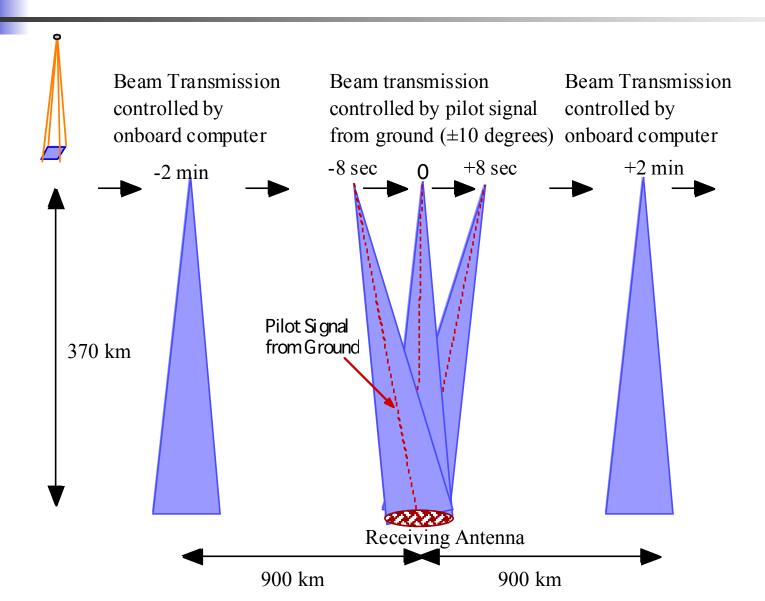
Option A(700W, 65 kg)


Gravity Gradient Stabilization

Option B (2800W, 200 kg)



Demonstration Model (Option B)


Mission	Period	1 year		
	Configuration	Power generation/transmission panel suspended by 4 wires		
System	Panel size	1.6m x 1.6 m x 0.1m		
	Tether wire length	30 m		
	Total weight	200 kg		
	Attitude stability	±1°		
Power generation	Thin film solar cell array	350 W (85 W/module)		
	Frequency	5.8 GHz		
	Phase control	5 bit		
Down	Number of module	4		
Power transmission	Beam control	Retro-directive/Computer control, ±10°		
	Output power	700W/module, 2.8kW(total)		
	Power density	1,100W/m ² (antenna) 1.4µW/m ² (ground)		
Ground stations		JAXA ground stations International experiment sites		

Plasma Diagnostic Package (Option A, B)

Experiment Sequence (Option B)

Summary and Conclusion

- · A microwave transmission experiment, kWatt class, on small satellite is proposed based on the current SPS technologies.
- · It will demonstrate the retro-directive technology for microwave beam transmission in a long distance and will verify the high-density microwave propagation through the ionosphere.
- · This will be the first SPS demonstration experiment in orbit that will greatly attract public attention and promote SPS research.
- Further investigations are required to confirm the technical feasibilities, especially for microwave control system.