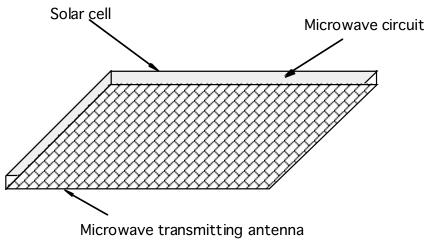


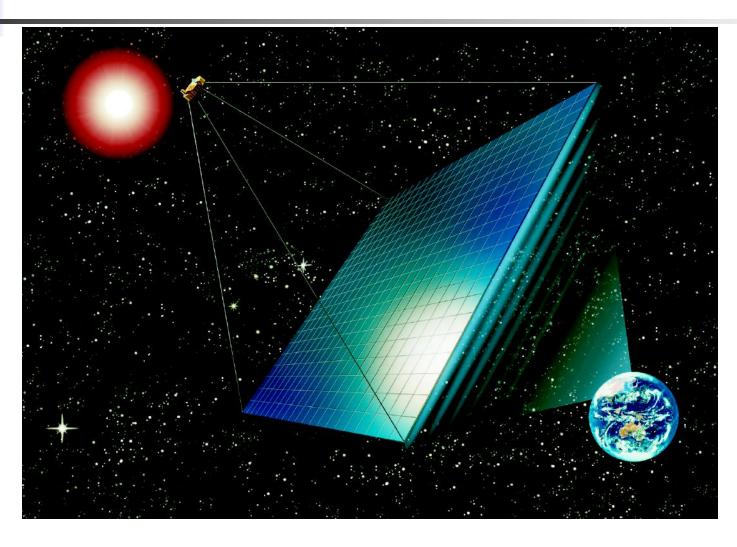
Conceptual Study of SSPS Demonstration Experiment

- Objectives of the study
- System configuration
- Flight operation
- Associated technologies

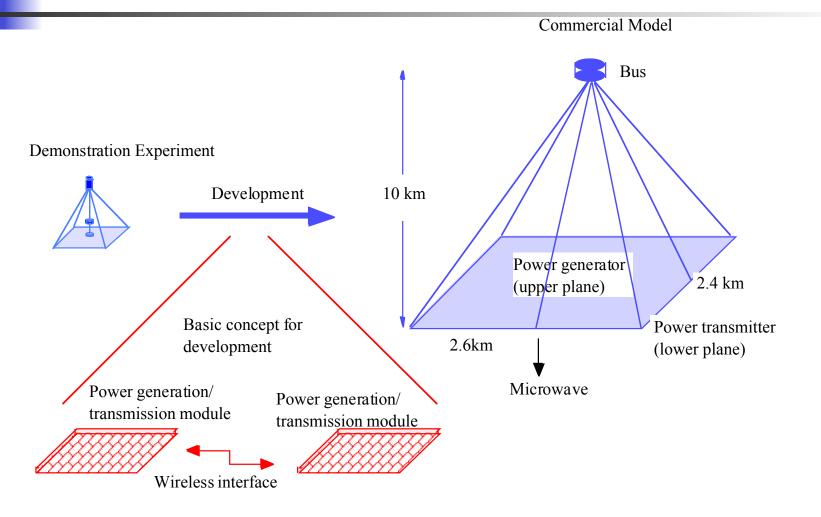
Policy 0


- A large number of electrical parts (solar cells, microwave elements) required: 0
 - ⇒ COTS(commercial off-the-shelf), high-technology, mass production, low-cost 0
- Structure and mechanism be simple and robust: 0
 - ⇒ no active attitude control and no movable mechanism in operation 0
- Distributed power system : 0
 - ⇒ power generation/transmission module(sandwitch power module), no power bus 0
- Concentration of information: 0
 - ⇒ wireless LAN 0

Concept of Power Generation and Transmission Module (Sandwich Panel) **O**


- Module including power generation and transmission 0
- Wireless interface between modules 0

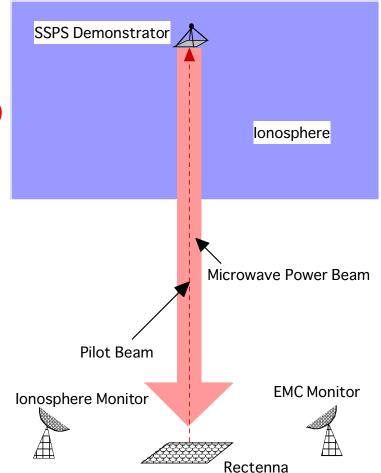
- easy attachment and detachment as a module 0
- robust as a power system 0
- easy fabrication, test, integration, and maintenance




(solar cell also attached)

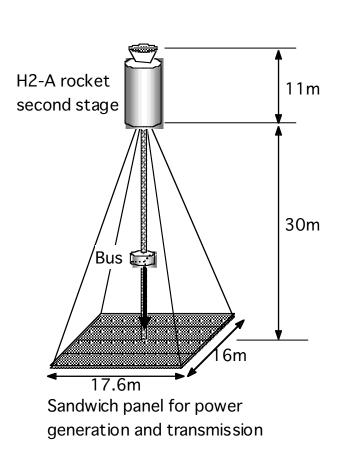
Practical or Commercial SSPS 0

Evolution of Demonstration Experiment to Practical SSPS 0



Concept of Demonstration Experiment **O**

Most important subject at this stage towards the practical SSPS is a verification of power transmission from space to ground. 0


- (1) Demonstration of microwave beam control, pointing precisely to a rectenna on ground from a large antenna dynamically-moving in orbit. 0
- (2) Evaluation of over-all power efficiency as an energy system.
- (3) Demonstration of electromagnetic compatibility with existing communication infrastructure.
- (4) Study of operation procedure as an solar power satellite. 0

Configuration of Demonstration Experiment

- 0
- Modular panel(sandwitch panel) combined with power generation and microwave transmission. 0
- Small panels folded in rocket and deployment in orbit to a large single panel. 0
- Attitude stabilization by gravity gradient force using a tether system and truss system. 0
- Thin film-type solar cells commercially available. 0
- Microwave transmission elements commercially available. 0
- f = 5.8GHz.0
- Hybrid system combined with magnetron and semiconductors. 0
- Wireless synchronization of frequency and phase of oscillators for all panels. 0
- Retrodirective beam control using pilot signal from ground.

Size 40.8m x 17.6m x 16.0m

Total Weight 18,100 kg
Power Generation 36 kW max

Power Transmission 420 kW~140 kW

Beam Control retrodirective control

Microwave Frequency 5.8 GHz

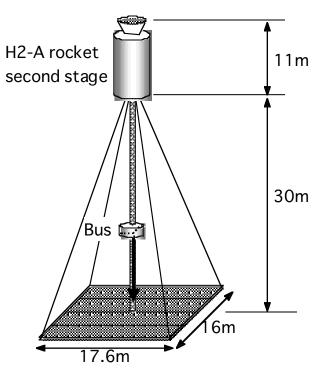
Operation full power for 16 sec 10% power for 4

min

System Configuration panel, truss, tether, weight mass

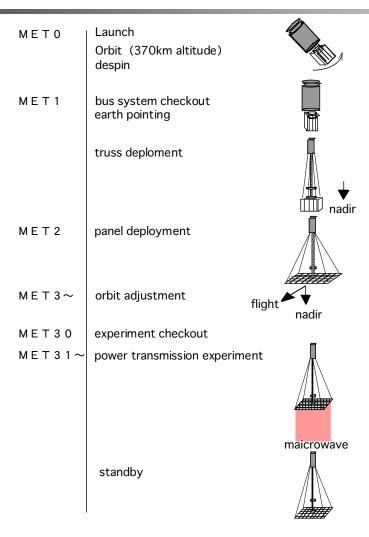
Panel Configuration 80 foldable panels

400 power modules

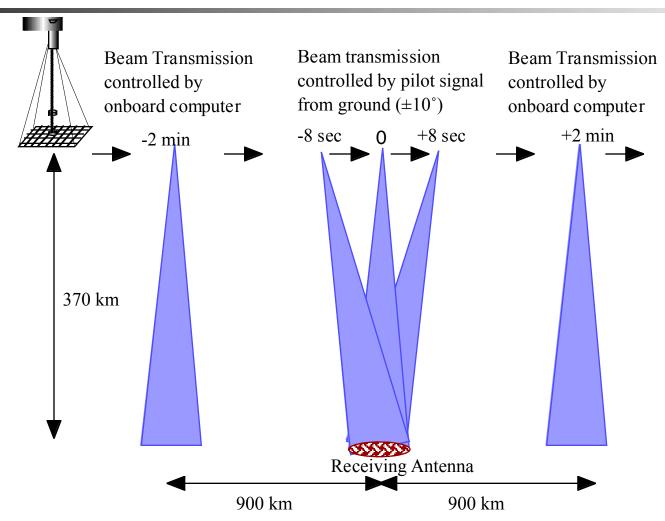

250,000 antennas

Attitude Control gravity gradient force

Altitude 370 km


Rectenna type parabola collector

Rectenna output $30 \text{ kW} \sim 10 \text{ kW} (500 \text{ m diameter})$



Sandwich panel for power generation and transmission

Mission Operation **O**

Experiment Sequence of Microwave Power Transmission **U**

Critical Technologies for Demonstration Experiment **O**

Critical issues	Problem Area		
Frequency and phase synchronization between sandwich panels	Wireless interface		
High-efficiency and low-loss microwave transmitter	Phase shifter Amplifier Antenna		
Retrodirective beam control	Pilot signal Microwave beam power		
Thermal analysis	Heat input Heat radiation		
Two-dimensional panel deployment	Deployment		
Gravity stabilization by truss and tether hybrid system			
Shape control of panel for microwave transmission	Swing Deformation of panel		
Rectenna for low-power density microwave	Microwave Beam Reflector Receiving Antenna		

Current Status of Research O

	Concept Development	Verification by simulation	Verification by experiment
Frequency and phase synchronization between sandwich panels			
High-efficiency and low-loss microwave transmitter			
Retrodirective beam control			
Thermal analysis			
Two-dimensional panel deployment			
Gravity stabilization by truss and tether hybrid system			
Shape control of panel for microwave transmission			
Rectenna for low-power density microwave			

Conclusion 0

- Demonstration experiment towards the practical SSPS has been studied.
- Sandwich panel module, wireless interface between modules, stabilization by gravity gradient force using tether and truss, are major characteristic features.
- •Study indicates power transmission from space to ground more than 100kW or more is feasible.
- Further study is required for retro-directive beam control, two-dimensional panel deployment, and rectenna for low-power intensity microwave.